Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496616

RESUMO

Raf kinases play vital roles in normal mitogenic signaling and cancer, however, the identities of functionally important Raf-proximal proteins throughout the cell are not fully known. Raf1 proximity proteomics/BioID in Raf1-dependent cancer cells unexpectedly identified Raf1-adjacent proteins known to reside in the mitochondrial matrix. Inner-mitochondrial localization of Raf1 was confirmed by mitochondrial purification and super-resolution microscopy. Inside mitochondria, Raf1 associated with glutaminase (GLS) in diverse human cancers and enabled glutaminolysis, an important source of biosynthetic precursors in cancer. These impacts required Raf1 kinase activity and were independent of canonical MAP kinase pathway signaling. Kinase-dead mitochondrial matrix-localized Raf1 impaired glutaminolysis and tumorigenesis in vivo. These data indicate that Raf1 localizes inside mitochondria where it interacts with GLS to engage glutamine catabolism and support tumorigenesis.

3.
Theor Appl Genet ; 136(5): 111, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052704

RESUMO

KEY MESSAGE: A mutation of CsARC6 not only causes white fruit color in cucumber, but also affects plant growth and fruit quality. Fruit color of cucumber is a very important agronomic trait, but most of the genes affecting cucumber white fruit color are still unknow, and no further studies were reported on the effect of cucumber fruit quality caused by white fruit color genes. Here, we obtained a white fruit mutant em41 in cucumber by EMS mutagenesis. The mutant gene was mapped to a 548 kb region of chromosome 2. Through mutation site analysis, it was found to be a null allele of CsARC6 (CsaV3_2G029290). The Csarc6 mutant has a typical phenotype of arc6 mutant that mesophyll cells contained only one or two giant chloroplasts. ARC6 protein was not detected in em41, and the level of FtsZ1 and FtsZ2 was also reduced. In addition, FtsZ2 could not form FtsZ ring-like structures in em41. Although these are typical arc6 mutant phenotypes, some special phenotypes occur in Csarc6 mutant, such as dwarfness with shortened internodes, enlarged fruit epidermal cells, decreased carotenoid contents, smaller fruits, and increased fruit nutrient contents. This study discovered a new gene, CsARC6, which not only controls the white fruit color, but also affects plant growth and fruit quality in cucumber.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Mutação , Cloroplastos/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608661

RESUMO

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Assuntos
RNA Helicases DEAD-box , Glucose , Queratinócitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glucose/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Humanos
5.
Curr Protoc ; 3(1): e659, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36705610

RESUMO

UV cross-linking-based methods are the most common tool to explore in vivo RNA-protein interactions. UV cross-linking enables the freezing of direct interactions in the cell, which can then be mapped by high-throughput sequencing through a family of methods termed CLIP-seq. CLIP-seq measures the distribution of cross-link events by purifying a protein of interest and sequencing the covalently bound RNA fragments. However, there are disagreements and ambiguities as to which proteins are RNA-binding proteins and what interactions are significant as all proteins contact all RNAs at some frequency. Here we describe a protocol for both determining RNA-protein interactions through a combination of RNA library preparation and the measurement of absolute cross-link rates, which helps determine what proteins are RNA-binding proteins and what interactions are significant. This protocol, comprising an updated form of the easyCLIP protocol, describes guidelines for RNA library preparation, oligo and protein standard construction, and the measurement of cross-link rates. These methods are easily visualizable through their fluorescent labels and can be adapted to study RNA-binding properties of both functional, high affinity RNA-binding proteins, and the accidental RNA interactions of non-RNA-binding proteins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: RNA library construction Basic Protocol 2: Determining UV cross-link rates Support Protocol 1: Cross-linking and lysing cells Support Protocol 2: Adapter preparation Support Protocol 3: Preparation of cross-linked RBP standard.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/genética , RNA/química , RNA/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Stem Cell Rev Rep ; 19(2): 531-549, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36258139

RESUMO

Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.


Assuntos
Proteínas do Citoesqueleto , Transtornos do Neurodesenvolvimento , Neurônios , Transdução de Sinais , Fatores de Transcrição , Transtornos do Neurodesenvolvimento/genética , Proteínas do Citoesqueleto/genética , Fatores de Transcrição/genética
7.
Proteomics ; 23(3-4): e2200059, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35443089

RESUMO

RNA contains more than 170 types of chemical modifications, and these modified nucleosides are recognized, installed and removed by their reader, writer, and eraser (RWE) proteins, respectively. Here, we employed a parallel-reaction monitoring (PRM)-based targeted proteomic method, in conjunction with stable isotope labeling by amino acids in cell culture (SILAC), to examine comprehensively the differential expression of epitranscriptomic RWE proteins in a matched pair of primary/metastatic colorectal cancer (CRC) cells, namely SW480/SW620. We were able to quantify 113 nonredundant epitranscriptomic RWE proteins; among them, 48 and 5 were up- and down-regulated by >1.5-fold in SW620 over SW480 cells, respectively. Some of those proteins with marked up-regulation in metastatic CRC cells, including NAT10, hnRNPC, and DKC1, were documented to assume important roles in the metastasis of CRC and other types of cancer. Interrogation of the Clinical Proteomic Tumor Analysis Consortium data revealed the involvement of DUS1L in the initiation and metastatic transformation of CRC. It can be envisaged that the PRM method can be utilized, in the future, to identify epitranscriptomic RWE proteins involved in the metastatic transformations of other types of cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Proteômica/métodos , Regulação para Cima , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética
8.
Nat Methods ; 19(8): 959-968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927480

RESUMO

DNA-protein interactions mediate physiologic gene regulation and may be altered by DNA variants linked to polygenic disease. To enhance the speed and signal-to-noise ratio (SNR) in the identification and quantification of proteins associated with specific DNA sequences in living cells, we developed proximal biotinylation by episomal recruitment (PROBER). PROBER uses high-copy episomes to amplify SNR, and proximity proteomics (BioID) to identify the transcription factors and additional gene regulators associated with short DNA sequences of interest. PROBER quantified both constitutive and inducible association of transcription factors and corresponding chromatin regulators to target DNA sequences and binding quantitative trait loci due to single-nucleotide variants. PROBER identified alterations in regulator associations due to cancer hotspot mutations in the hTERT promoter, indicating that these mutations increase promoter association with specific gene activators. PROBER provides an approach to rapidly identify proteins associated with specific DNA sequences and their variants in living cells.


Assuntos
Cromatina , DNA , Biotinilação , Cromatina/genética , DNA/genética , DNA/metabolismo , Plasmídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Proteome Res ; 21(8): 2063-2070, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35820187

RESUMO

Kinases play important roles in cell signaling, and adenosine monophosphate (AMP) is known to modulate cellular energy homeostasis through AMP-activated protein kinase (AMPK). Here, we explored novel AMP-binding kinases by employing a desthiobiotin-conjugated AMP acyl-phosphate probe to enrich efficiently AMP-binding proteins. Together with a parallel-reaction monitoring-based targeted proteomic approach, we uncovered 195 candidate AMP-binding kinases. We also enriched desthiobiotin-labeled peptides from adenine nucleotide-binding sites of kinases and analyzed them using LC-MS/MS in the multiple-reaction monitoring mode, which resulted in the identification of 44 peptides derived from 43 kinases displaying comparable or better binding affinities toward AMP relative to adenosine triphosphate (ATP). Moreover, our proteomic data revealed a potential involvement of AMP in the MAPK pathway through binding directly to the relevant kinases, especially MEK2 and MEK3. Together, we revealed the AMP-binding capacities of a large number of kinases, and our work built a strong foundation for understanding how AMP functions as a second messenger to modulate cell signaling.


Assuntos
Proteoma , Proteômica , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Cromatografia Líquida , Peptídeos , Proteoma/genética , Espectrometria de Massas em Tandem
10.
Nat Commun ; 13(1): 4121, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840578

RESUMO

The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide, including CD53, CD10, EVI2B, and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally, we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological, therapeutic, and diagnostic understanding of myeloma.


Assuntos
Mieloma Múltiplo , Resistência a Medicamentos , Humanos , Imunoterapia/métodos , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteômica , Microambiente Tumoral
11.
Anal Chem ; 94(3): 1525-1530, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35021009

RESUMO

Epitranscriptomic reader, writer, and eraser (RWE) proteins recognize, install, and remove modified nucleosides in RNA, which are known to play crucial roles in RNA processing, splicing, and stability. Here, we established a liquid chromatography-parallel-reaction monitoring (LC-PRM) method for high-throughput profiling of a total of 152 epitranscriptomic RWE proteins. We also applied the LC-PRM method, in conjunction with stable isotope labeling by amino acids in cell culture (SILAC), to quantify these proteins in two pairs of matched parental/radioresistant breast cancer cells (i.e., MDA-MB-231 and MCF-7 cells and their corresponding radioresistant C5 and C6 clones), with the goal of assessing the roles of these proteins in radioresistance. We found that eight epitranscriptomic RWE proteins were commonly altered by over 1.5-fold in the two pairs of breast cancer cells. Among them, TRMT1 (an m2,2G writer) may play a role in promoting breast cancer radioresistance due to its clinical relevance and its correlation with DNA repair gene sets. To our knowledge, this is the first report of a targeted proteomic method for comprehensive quantifications of epitranscriptomic RWE proteins. We envision that the LC-PRM method is applicable for studying the roles of these proteins in the metastatic transformation of cancer and therapeutic resistance of other types of cancer in the future.


Assuntos
Neoplasias da Mama , Proteômica , Neoplasias da Mama/patologia , Cromatografia Líquida , Feminino , Humanos , Células MCF-7 , Proteínas
12.
Proteomics ; 22(7): e2100231, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951099

RESUMO

ALKBH4 is a versatile demethylase capable of catalyzing the demethylation of monomethylated lysine-84 on actin and N6 -methyladenine in DNA. In this study, we conducted a quantitative proteomic experiment to reveal the altered expression of proteins in HEK293T cells upon genetic ablation of ALKBH4. Our results showed markedly diminished levels of GSTP1 and HSPB1 proteins in ALKBH4-depleted cells, which emanate from an augmented expression level of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and the ensuing elevated cytosine methylation in the promoter regions of GSTP1 and HSPB1 genes. Together, our results revealed a role of ALKBH4 in modulating DNA cytosine methylation through regulating the expression level of DNMT1 protein.


Assuntos
Homólogo AlkB 4 da Lisina Desmetilase , Metilação de DNA , Actinas/metabolismo , Homólogo AlkB 4 da Lisina Desmetilase/genética , Homólogo AlkB 4 da Lisina Desmetilase/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células HEK293 , Humanos , Proteômica
13.
PLoS Pathog ; 17(10): e1009412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597346

RESUMO

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Parasita/fisiologia , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Humanos , Biossíntese de Proteínas/fisiologia , Proteoma/metabolismo
15.
Anal Chem ; 93(39): 13251-13259, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34549933

RESUMO

Kinases catalyze the transfer of the γ-phosphate group from adenosine triphosphate (ATP) to their protein and small-molecule substrates, and this phosphorylation is a crucial element of multiple cell signaling pathways. Herein, we employed isotope-coded ATP acyl-phosphate probes, in conjunction with a multiple-reaction monitoring (MRM)-based targeted proteomic method for proteome-wide identifications of endogenous kinases that can bind to two N6-modified ATP derivatives, N6-methyl-ATP (N6-Me-ATP), and N6-furfuryl-ATP (a.k.a. kinetin triphosphate, KTP). We found that, among the ∼300 quantified kinases, 27 and 18 are candidate kinases that can bind to KTP and N6-Me-ATP, respectively. Additionally, GSK3α and GSK3ß are among the kinases that can bind to both ATP analogues. Moreover, the in vitro biochemical assay showed that GSK3ß could employ N6-Me-ATP but not KTP as the phosphate group donor to phosphorylate its substrate peptide. Molecular modeling studies provided insights into the differences between N6-Me-ATP and KTP in enabling the GSK3ß-mediated phosphorylation. Together, our chemoproteomic approach led to the identification of endogenous kinases that can potentially be targeted by the two ATP analogues. The approach should be generally applicable for assessing endogenous kinases targeted by other ATP and purine analogues.


Assuntos
Trifosfato de Adenosina , Proteoma , Proteômica
16.
J Proteome Res ; 20(7): 3611-3620, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34043365

RESUMO

As optimum temperature is essential for all living organisms, heat shock represents a challenging problem for their survival. Therefore, cellular response to heat shock is among the most extensively investigated stress response pathways; however, how the human proteome responds to heat shock has not been comprehensively investigated. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC), together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, to fulfill an in-depth analysis of the alterations in the human proteome in M14 human melanoma cells in response to heat shock stress. We found that, after heat shock, 284 and 278 out of the 4319 quantified proteins were with substantially diminished and elevated expressions, respectively. We also examined the alterations in human kinome after heat shock by using our recently developed targeted proteomic method relying on parallel-reaction monitoring. Our results showed that the expression levels of 11 and 22 kinase proteins were increased and decreased, respectively, by at least 1.5-fold upon heat shock. By interrogating publicly available RNA-seq and m6A sequencing data, we observed that the elevated expression of more than 30 proteins, including CHEK1 and CCND3 kinases, could occur via an m6A-mediated mechanism. Furthermore, our results from single-base elongation and ligation-based quantitative polymerase chain reaction (qPCR) amplification (SELECT) and luciferase reporter assays revealed that heat shock gave rise to elevated m6A levels at A280 and A286 sites in the 5'-untranslated region of HSPH1 mRNA, thereby leading to increased translation of HSPH1 protein. Together, our discovery and targeted proteomic methods revealed the reprogramming of human proteome and kinome upon heat shock stress and provided insights into cellular responses toward heat shock stress.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Adenosina/análogos & derivados , Cromatografia Líquida , Resposta ao Choque Térmico , Humanos , Proteoma/genética
19.
Nat Commun ; 12(1): 1569, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692367

RESUMO

Quantitative criteria to identify proteins as RNA-binding proteins (RBPs) are presently lacking, as are criteria to define RBP target RNAs. Here, we develop an ultraviolet (UV) cross-linking immunoprecipitation (CLIP)-sequencing method, easyCLIP. easyCLIP provides absolute cross-link rates, as well as increased simplicity, efficiency, and capacity to visualize RNA libraries during sequencing library preparation. Measurement of >200 independent cross-link experiments across >35 proteins identifies an RNA cross-link rate threshold that distinguishes RBPs from non-RBPs and defines target RNAs as those with a complex frequency unlikely for a random protein. We apply easyCLIP to the 33 most recurrent cancer mutations across 28 RBPs, finding increased RNA binding per RBP molecule for KHDRBS2 R168C, A1CF E34K and PCBP1 L100P/Q cancer mutations. Quantitating RBP-RNA interactions can thus nominate proteins as RBPs and define the impact of specific disease-associated RBP mutations on RNA association.


Assuntos
Proteínas de Ligação a RNA/química , RNA/química , Animais , Sítios de Ligação , Humanos , Imunoprecipitação , RNA/metabolismo , RNA/efeitos da radiação , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/efeitos da radiação , Raios Ultravioleta
20.
bioRxiv ; 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33655243

RESUMO

Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2. AUTHOR SUMMARY: SARS-CoV-2 is the latest pathogenic coronavirus to emerge as a public health threat. We create a database of proximal host proteins to 17 SARS-CoV-2 viral proteins. We validate that NSP1 is proximal to the EIF3 translation initiation complex and is a potent inhibitor of translation. We also identify ORF6 antagonism of RNA-mediate innate immune signaling. We produce a database of potential host targets of the viral protease NSP5, and create a fluorescence-based assay to screen cleavage of peptide sequences. We believe that this data will be useful for identifying roles for many of the uncharacterized SARS-CoV-2 proteins and provide insights into the pathogenicity of new or emerging coronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA