Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511025

RESUMO

Natural products provide valuable starting points for new drugs with unique chemical structures. Here, we retrieve and join the LOTUS natural product database and ChEMBL interaction database to explore the relations and rhythm between chemical features of natural products and biotarget spaces. Our analysis revealed relations between the biogenic pathways of natural products and species taxonomy. Nitrogen-containing natural products were more likely to achieve high activity and have a higher potential to become candidate compounds. An apparent trend existed in the target space of natural products originating from different biological sources. Highly active alkaloids were more related to targets of neurodegenerative or neural diseases. Oligopeptides and polyketides were mainly associated with protein phosphorylation and HDAC receptors. Fatty acids readily intervened in various physiological processes involving prostanoids and leukotrienes. We also used FusionDTA, a deep learning model, to predict the affinity between all LOTUS natural products and 622 therapeutic drug targets, exploring the potential target space for natural products. Our data exploration provided a global perspective on the gaps in the chemobiological space of natural compounds through systematic analysis and prediction of their target space, which can be used for new drug design or natural drug repurposing.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/química , Bases de Dados Factuais , Desenho de Fármacos
2.
Ultrason Sonochem ; 73: 105475, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561651

RESUMO

Ni/diamond composite coatings have been synthesized by ultrasonic-assisted electrodeposition in a Ni electroplating bath containing diamond nanoparticles. The influences of current density and ultrasonic agitation on the coating composition, morphology, topography, phase structure, and electrochemical characteristics of the electrodeposits were evaluated. Ultrasonic agitation was provided using an external ultrasonic bath at a frequency of 40 kHz and acoustic power of 300 W. Coating samples were also prepared under magnetic stirring for comparison with the ultrasonic-assisted deposits. This work reveals that the diamonds have been incorporated and evenly distributed in the composites. The coatings exhibit dense, granular like morphology with pyramid-like grains. As current density increases, the diamond amount of ultrasonic-assisted electrodeposits first increased to maximum of 11.4 wt% at 3 A dm-2 and then decreases to 9.9 wt% at 5 A dm-2, and the RTC of the preferred orientation (200) plane increases from 76.3% up to 93.4%. The crystallite size was 60-80 nm and the Ra of the magnetic and ultrasonic agitations were 116 nm, 110 nm, respectively. The maximum Rp of 39.9, 50.3 kΩ cm2 was obtained at 4 A dm-2 when respectively immersed 30 min and 7 days, illustrating the best corrosion resistance of the coatings of 4 A dm-2. The effects of mechanical and ultrasonic agitations on the mechanism of the co-electrodeposition process were both proposed. The incorporation of diamond particles enhances the hardness and wear-resisting property of the electrodeposits. The ultrasonic-assisted electrodeposited Ni/diamond coating has better corrosion resistance than that prepared under mechanical stirring conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA