Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400102, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606728

RESUMO

Solar-thermal regulation concerning thermal insulation and solar modulation is pivotal for cooling textiles and smart buildings. Nevertheless, a contradiction arises in balancing the demand to prevent external heat infiltration with the efficient dissipation of excess heat from enclosed spaces. Here, a concentration-gradient polymerization strategy is presented for fabricating a gradient porous polymeric film comprising interconnected polymeric microspheres. This method involves establishing an electric field-driven gradient distribution of charged crosslinkers in the precursor solution, followed by subsequent polymerization and freeze-drying processes. The resulting porous film exhibits a significant porosity gradient along its thickness, leading to exceptional unidirectional thermal insulation capabilities with a thermal rectification factor of 21%. The gradient porous film, with its thermal rectification properties, effectively reconciles the conflicting demands of diverse thermal conductivity for cooling unheated and spontaneously heated enclosed spaces. Consequently, the gradient porous film demonstrates remarkable enhancements in solar-thermal management, achieving temperature reductions of 3.0 and 4.1 °C for unheated and spontaneously heated enclosed spaces, respectively, compared to uniform porous films. The developed gradient-structured porous film thus holds promise for the development of thermal-rectified materials tailored to regulate solar-thermal conditions within enclosed environments.

3.
Small ; : e2311703, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459649

RESUMO

High tap density electrodes play a vital role in developing rechargeable batteries with high volumetric capacities, however, developing advanced electrodes with satisfied capacity, excellent structural stability, and achieving the resulted batteries with a high initial Coulombic efficiency (ICE) and good rate capability with long lifespan simultaneously, are still an intractable challenge. Herein, an ultrahigh ICE of 94.1% and stable cycling of carbon-free iron selenides anode is enabled with a high tap density of 2.57 g cm-3 up to 4000 cycles at 5 A g-1 through strain-modulating by constructing a homologous heterostructure. Systematical characterization and theoretical calculation show that the self-adaptive homologous heterointerface alleviates the stress of the iron selenide anodes during cycling processes and subsequently improves the stability of the assembled batteries. Additionally, the well-formed homologous heterostructure also contributes to the rapid Na+ diffusion kinetic, increased charge transfer, and good reversibility of the transformation reactions, endowing the appealing rate capability of carbon-free iron selenides. The proposed design strategy provides new insight and inspiration to aid in the ongoing quest for advanced electrode materials with high tap densities and excellent stability.

4.
Nanomicro Lett ; 16(1): 131, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409640

RESUMO

The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid-liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW m-1 K-1), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.

5.
Nano Lett ; 24(10): 3036-3043, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415595

RESUMO

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine. Moreover, the amine group of the oleylamine molecule at the cathode is capable of producing [OA*I+]I3- charge-transfer complexes with iodine, which facilitates the rapid migration of iodine and results in a highly reversible iodine conversion process. Consequently, the as-prepared ZIBs can deliver over 2000 cycles at 0.5 mA cm-2 with a capacity retention of 75.3%. This work presents a novel, straightforward, and efficient method for the rapid construction of ZIBs.

6.
Small ; 20(1): e2305009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641184

RESUMO

As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.

7.
J Cancer Res Ther ; 19(6): 1646-1653, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156933

RESUMO

BACKGROUND: Ferroptosis is a novel subtype of programmed cell death caused by iron-dependent lipid peroxidation and excessive reactive oxygen species (ROS) production. Small-molecule ferroptotic drugs have the probability of selectively targeting the specific features of aggressive tumor cells. In particular, pseudolaric acid B (PAB) triggered ferroptosisin breast cancer cells. The aim of this study is to explore the antitumor effect of PAB on A549 cells and provide a theoretical basis for the further development and clinical application of PAB. METHODS: First, relevant databases were used to predict of target genes related to PAB, Then, EdU proliferation assay, colony formation and wound-healing assays were applied to calculate A549 cells proliferative abilities. Measurement of ferrous iron, lipid peroxidation, ROS, malondialdehyde (MDA) and glutathione (GSH) were utilized to explore the relevant mechanism. RESULTS: We showed that PAB decreased the viability of lung adenocarcinoma cells in vitro, which was accompanied by abnormally elevated levels of intracellular ferrous iron and overproduction of lipid reactive oxidate species (L-ROS). In turn, deferoxamine (DFO) significantly rescued PAB-induced lipid peroxidation. PAB also improved the intracellular labile iron pool by promoting ferritin autophagy via the upregulation of the nuclear receptor coactivator 4 (NCOA4). Moreover, silencing of NCOA4 alleviated PAB-inducedferroptotic death and reduced the levels of intracellular ferrous iron. CONCLUSIONS: In summary, PAB-triggered ferroptosis in lung adenocarcinoma cells by enhancing ferritinophagy. thus, PAB is a potential therapeutic agent for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Autofagia , Fatores de Transcrição/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Coativadores de Receptor Nuclear/metabolismo
8.
J Am Chem Soc ; 145(39): 21387-21396, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37728869

RESUMO

The electrocatalytic nitrate (NO3-) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3-δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3-δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3-δ (LF0.9Cu0.1) submicrofibers with a stronger Fe-O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 µg h-1 mg-1cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3- enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton-electron coupling step (*NO3 + H+ + e- → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.

9.
Curr Med Sci ; 43(3): 469-477, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37264195

RESUMO

OBJECTIVE: The hypersensitivity of the kidney makes it susceptible to hypoxia injury. The involvement of neutrophil extracellular traps (NETs) in renal injury resulting from hypobaric hypoxia (HH) has not been reported. In this study, we aimed to investigate the expression of NETs in renal injury induced by HH and the possible underlying mechanism. METHODS: A total of 24 SD male rats were divided into three groups (n=8 each): normal control group, hypoxia group and hypoxia+pyrrolidine dithiocarbamate (PDTC) group. Rats in hypoxia group and hypoxia+PDTC group were placed in animal chambers with HH which was caused by simulating the altitude at 7000 meters (oxygen partial pressure about 6.9 kPa) for 7 days. PDTC was administered at a dose of 100 mg/kg intraperitoneally once daily for 7 days. Pathological changes of the rat renal tissues were observed under a light microscope; the levels of serum creatinine (SCr), blood urea nitrogen (BUN), cell-free DNA (cf-DNA) and reactive oxygen species (ROS) were measured; the expression levels of myeloperoxidase (MPO), citrullinated histone H3 (cit-H3), B-cell lymphoma 2 (Bcl-2), Bax, nuclear factor kappa B (NF-κB) p65 and phospho-NF-κB p65 (p-NF-κB p65) in rat renal tissues were detected by qRT-qPCR and Western blotting; the localization of NF-κB p65 expression in rat renal tissues was observed by immunofluorescence staining and the expression changes of NETs in rat renal tissues were detected by multiplex fluorescence immunohistochemical staining. RESULTS: After hypoxia, the expression of NF-κB protein in renal tissues was significantly increased, the levels of SCr, BUN, cf-DNA and ROS in serum were significantly increased, the formation of NETs in renal tissues was significantly increased, and a large number of tubular dilatation and lymphocyte infiltration were observed in renal tissues. When PDTC was used to inhibit NF-κB activation, NETs formation in renal tissue was significantly decreased, the expression level of Bcl-2 in renal tissues was significantly increased, the expression level of Bax was significantly decreased, and renal injury was significantly alleviated. CONCLUSION: HH induces the formation of NETs through the NF-κB signaling pathway, and it promotes apoptosis and aggravates renal injury by decreasing Bcl-2 and increasing Bax expression.


Assuntos
Armadilhas Extracelulares , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Armadilhas Extracelulares/metabolismo , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2/genética , Rim/patologia , Transdução de Sinais , Hipóxia/patologia , DNA
10.
Front Cardiovasc Med ; 10: 1138390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008335

RESUMO

Background: Infective endocarditis (IE), though uncommon, is a potentially lethal disease. Blood culture-negative endocarditis (BCNIE) accounts for 2.5%-31% of all cases of IE and can lead to life-threatening complications, including aortic root pseudoaneurysm. It is associated with considerable diagnostic and therapeutic dilemmas. TrueVue and TrueVue Glass include the latest two technologies applied in advanced three-dimensional echocardiography, which allow for novel photorealistic images of cardiac structures, and provide abundant previously unavailable diagnostic information. Herein, based on a series of novel three-dimensional echocardiographic methods, we report a case of BCNIE with aortic valve involvement, leading to aortic valve perforation and prolapse, and developing into a giant aortic root pseudoaneurysm. Case summary: In this study, we presented a case of a 64-year-old man exhibiting symptoms of intermittent fever, asthenia, and dyspnea following light exertion. Physical examination, laboratory tests, and electrocardiograms were suspected of IE, though the results of blood cultures were exactly negative. Three-dimensional transthoracic echocardiography, as well as a series of novel advanced techniques, was adopted to clearly visualize the lesions of the aortic valve and aortic root. However, despite active medical treatment modalities, the patient eventually suffered from a sudden, unexpected death 5 days later. Conclusion: BCNIE with aortic valve involvement and development into a giant aortic root pseudoaneurysm is a rare and serious clinical event. In addition, TrueVue and TrueVue Glass offer unprecedented photographic stereoscopic images, enhancing the diagnostic performance of such structural heart diseases.

11.
Foods ; 12(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048289

RESUMO

Theabrownin (TB) is a tea pigment extracted from Pu-erh Tea. The effects of TB on innate immunity and inflammation are not well understood. Herein, the effects of TB on innate immunity are investigated using RAW264.7 macrophages. We found that TB promoted the proliferation of RAW264.7 macrophages, altered their morphology, enhanced their pinocytic and phagocytic ability, and significantly increased their secretion of nitric oxide (NO) and cytokines, all of which enhanced the immune response. Additionally, TB inhibited the release of inflammatory signals in RAW264.7 macrophages primed with lipopolysaccharide (LPS), implying that TB modulates the excessive inflammation induced by bacterial infection. A Western blot showed that TB could activate the toll-like receptor (TLR)2/4-mediated myeloid differentiation factor 88 (MyD88)-dependent mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway and the TLR2-mediated phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, enhancing the immune functions of RAW264.7 macrophages. TB also inhibited the phosphorylation of core proteins in the MAPK/NF-κB/PI3K-AKT signaling pathway induced by LPS. In addition, we analyzed the transcriptomes of RAW264.7 macrophages, and a Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that TB modulated thetoll-like receptor signal pathway. A gene ontology (GO) enrichment analysis indicated that TB treatment strongly modulated the immune response and inflammation. As a result, TB-enhanced innate immunity and modulated inflammation via the TLR2/4 signaling pathway.

12.
Angew Chem Int Ed Engl ; 62(27): e202218122, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37081751

RESUMO

Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3 C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3 C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3 C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 µg h-1 mg-1 cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 - yield rate up to 15.7 µg h-1 mg-1 cat. and FE up to 3.4 % in nitrogen oxidation reaction).

13.
ACS Omega ; 8(8): 7690-7698, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872994

RESUMO

Manganese dioxide and its derivatives are widely used as promising electrode materials for supercapacitors. To achieve the environmentally friendly, simple, and effective material synthesis requirements, the laser direct writing method is utilized to pyrolyze the MnCO3/carboxymethylcellulose (CMC) precursors to MnO2/carbonized CMC (LP-MnO2/CCMC) in a one-step and mask-free way successfully. Here, CMC is utilized as the combustion-supporting agent to promote the conversion of MnCO3 into MnO2. The selected materials have the following advantages: (1) MnCO3 is soluble and can be converted into MnO2 with the promotion of a combustion-supporting agent. (2) CMC is an eco-friendly and soluble carbonaceous material, which is widely used as the precursor and combustion-supporting agent; (3) the redundant part of the MnCO3/CMC precursor can be removed by deionized water, which is simple and convenient. The different mass ratios of MnCO3 and CMC-induced LP-MnO2/CCMC(R1) and LP-MnO2/CCMC(R1/5) composites are investigated in the electrochemical performance toward electrodes, respectively. The LP-MnO2/CCMC(R1/5)-based electrode showed the high specific capacitance of 74.2 F/g (at the current density of 0.1 A/g) and good electrical durability for 1000 times charging-discharging cycles. Simultaneously, the sandwich-like supercapacitor which was assembled by LP-MnO2/CCMC(R1/5) electrodes presents the maximum specific capacitance of 49.7 F/g at the current density of 0.1 A/g. Moreover, the LP-MnO2/CCMC(R1/5)-based energy supply system is used to light a light-emitting diode, which demonstrates the great potential of LP-MnO2/CCMC(R1/5)-based supercapacitors for power devices.

14.
ACS Appl Mater Interfaces ; 15(12): 16109-16117, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939056

RESUMO

The development of ultrastretchable ionogels with a combination of high transparency and unique waterproofness is central to the development of emerging skin-inspired sensors. In this study, an ultrastretchable semicrystalline fluorinated ionogel (SFIG) with visible-light transparency and underwater stability is prepared through one-pot copolymerization of acrylic acid and fluorinated acrylate monomers in a mixed solution of poly(ethylene oxide) (PEO) and fluorinated ionic liquids. Benefiting from the formation of the PEO-chain semicrystalline microstructures and the abundant noncovalent interactions (reversible hydrogen bonds and ion-dipole interactions) in an ionogel, SFIG is rendered with room-temperature stable cross-linking structures, providing high mechanical elasticity as well as high chain segment dynamics for self-healing and efficient energy absorption during the deformation. The resultant SFIG exhibits excellent stretchability (>2500%), improved mechanical toughness (7.4 MJ m-3), and room-temperature self-healability. Due to the high compatibility and abundance of hydrophobic fluorinated moieties in the ionogel, the SFIG demonstrates high visible-light transparency (>97%) and excellent waterproofness. Due to these unique advantages, the as-prepared SFIG is capable of working as an ultrastretchable ionic conductor in capacitive-type strain sensors, demonstrating excellent underwater strain-sensing performances with high sensitivity, large detecting range, and exceptional durability. This work might provide a straightforward and efficient method for obtaining waterproof ionogel elastomers for application in next-generation underwater sensors and communications.

15.
Sci Bull (Beijing) ; 67(23): 2428-2437, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566066

RESUMO

The creation of ultrafine alloy nanoparticles (<5 nm) that can maintain surface activity and avoid aggregation for heterogeneous catalysis has received much attention and is extremely challenging. Here, ultrafine PtRh alloy nanoparticles imprisoned by the cavities of reduced chiral covalent imine cage (PtRh@RCC3) are prepared successfully by an organic molecular cage (OMC) confinement strategy, while the soluble RCC3 can act as a homogenizer to homogenize the heterogeneous PtRh alloy in solution. Moreover, the X-ray absorption near-edge structure (XANES) results show that the RCC3 can act as an electron-acceptor to withdraw electrons from Pt, leading to the formation of higher valence Pt atoms, which is beneficial to improving the catalytic activity for the reduction of 4-nitrophenol. Attributed to the synergistic effect of Pt/Rh atoms and the unique function of the RCC3, the reaction rate constants of Pt1Rh16@RCC3 are 49.6, 8.2, and 5.5 times than those of the Pt1Rh16 bulk, Pt@RCC3 and Rh@RCC3, respectively. This work provides a feasible strategy to homogenize heterogeneous alloy nanoparticle catalysts in solution, showing huge potential for advanced catalytic application.


Assuntos
Elétrons , Nanopartículas , Oxirredução , Ligas/química , Porosidade , Nanopartículas/química , Catálise , Oxidantes
16.
Ying Yong Sheng Tai Xue Bao ; 33(11): 3116-3126, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384846

RESUMO

Antibiotic resistance genes (ARGs) in soil pose a major challenge to global environment and health. The development of effective technologies to reduce their negative effects has implications for maintaining soil health and human health. Biochar would be a suitable control material due to its characteristics of high carbon content, large surface area, excellent adsorption capacity, and economic advantages. There are three mechanisms underlying its negative effects on the abundance of ARGs: 1) adsorption of certain pollutants (e.g., antibiotics and heavy metals) to reduce the co-selective pressure of ARGs; 2) alteration of microbial composition through altering soil physico-chemical properties, and thereby limiting the ability of bacteria to undergo horizontal transfer of ARGs; 3) direct impairment of horizontal gene transfer by the adsorption of horizontal transfer vectors such as plasmids, transposons, and integrons. However, the negative effect of biochar depends on the source of material, pyrolysis process, and its amount added. Furthermore, field aging of biochar may reduce its ability to block ARGs. Endogenous contaminants of biochar, such as polycyclic aromatic hydrocarbons and heavy metals, may cause the enrichment of specific antibiotic-resistant bacteria in the environment or induce horizontal gene transfer. In further studies, suitable biochar should be selected according to soil environments, and biochar aging control measures should be taken to improve its retarding effect on ARGs.


Assuntos
Metais Pesados , Solo , Humanos , Solo/química , Antibacterianos/farmacologia , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Metais Pesados/análise , Bactérias/genética
17.
Ren Fail ; 44(1): 2056-2065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420656

RESUMO

BACKGROUND: In recent years, peroxisome proliferator-activated receptor γ (PPARγ) has been found to be closely associated with hypoxia renal disease. The aim of this study was to investigate the relationship between rosiglitazone and mitochondrial apoptosis in renal tissue and its associated mechanisms. METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into three groups (n = 8 in each): normal control group, hypoxia injury group (equal volume of 0.9% saline), and PPARγ agonist group (Rosiglitazone, 10 mg/kg · d, intraperitoneally). The hypoxia injury group and PPARγ agonist group were placed in a hypoxia chamber and the simulated altitude was set at 7,000 m for 7 days. Blood and kidney samples were collected after 7 days. The quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of PPARγ, nuclear factor kappa-B (NF-κB), B-cell lymphoma-2 (Bcl-2), and Bax. RESULTS: The results showed that compared with the normal control group, the renal tissue of rats after hypoxia was severely damaged, as shown by massive renal tubular epithelial cell degeneration and detachment, and renal tubular dilation. The NF-κB protein expression significantly increased, the Bcl-2 protein and mRNA expression significantly decreased, and Bax protein and mRNA expression significantly increased (p < .05 for all). Renal injury was much less severe in the PPARγ agonist group compared to the hypoxia injury group. CONCLUSIONS: Rosiglitazone can alleviate hypoxia renal injury, with the possible mechanism involving attenuation of apoptosis by inhibiting the activation of the NF-κB signaling pathway in a PPARγ-dependent manner and increasing Bcl-2 and decreasing Bax expression.


Assuntos
PPAR gama , Tiazolidinedionas , Masculino , Ratos , Animais , Rosiglitazona/farmacologia , PPAR gama/metabolismo , NF-kappa B/metabolismo , Proteína X Associada a bcl-2/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Apoptose , Células Epiteliais/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipoglicemiantes , Rim/metabolismo , RNA Mensageiro/metabolismo
18.
J Oncol ; 2022: 5233222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245982

RESUMO

Objective: To study the expression and correlation of insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), and programmed cell death ligand-1 (PD-L1) in nonsmall cell lung cancer (NSCLC). Methods: 45 lung cancer tissues and 30 adjacent normal tissues of NSCLC patients diagnosed in the Second Affiliated Hospital of Shandong First Medical University from June 2019 to August 2020 were selected. The expressions of INSR, IRS-1, and PD-L1 proteins in tumor tissues and adjacent tissues of NSCLC were detected by immunohistochemical staining. Results: The expression of INSR and IRS-1 in NSCLC was significantly higher than that in adjacent normal lung tissue (P < 0.05). INSR expression had statistical significance with the degree of pathological differentiation of nonsmall cell carcinoma (P = 0.031), but had no significant association with age, gender, pathological type, TNM stage, and lymph node metastasis status (P > 0.05). There was no significant correlation between IRS-1 positive expression and NSCLC patients' age, gender, pathological typing, degree of differentiation, TNM stage, and lymph node metastasis (P > 0.05). PD-L1 positive expression was correlated with lymph node metastasis of NSCLC (P = 0.028), while there was no significant correlation with gender, age, pathological type, TNM stage, and pathological differentiation degree of NSCLC patients (P > 0.05). Spearman correlation analysis showed that PD-L1 protein expression had a significant positive correlation with IRS-1 protein expression (r = 0.373), but was not correlated with the expression of INSR protein. Conclusion: IRS-1 may be involved in the regulation of PD-L1 expression and mediate the occurrence of tumor immune escape, which is expected to become a new target for NSCLC immunotherapy and provide new clinical evidence for immunosuppressive therapy.

19.
Comput Intell Neurosci ; 2022: 9591781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172325

RESUMO

To diagnose and cure breast cancer early, thus reducing the mortality of patients with breast cancer, a method was provided to judge threshold of image segmentation by wavelet transform (WT). It was used to obtain information about the general area of breast lumps by making a rough segmentation of the suspected area of the lump on mammogram. The boundary signal of the lump was obtained by region growth calculation or contour model of local activity. Meanwhile, multiplex polymerase chain reaction (mPCR) and mPCR-next-generation sequencing (mPCR-NGS) were used to detect BRCA1/2 genome. Sanger test was used for newly high virulent mutations to verify the correctness of mutagenic sites. The results were compared with the information marked by experts in the database. According to Daubechies wavelet coefficients, the average measurement accuracy was 92.9% and the average false positive rate of each image was 86%. According to mPCR-NGS, there was no pathogenic mutation in the 7 patients with high-risk BRCA1/2 genetic mutations. Single nucleotide polymorphism (SNP) in nonsynonymous coding region was detected, which was consistent with the Sanger test results. This method effectively isolated the lump area of human mammogram, and mPCR-NGS had high specificity and sensitivity in detecting BRCA1/2 genetic mutation sites. Compared with traditional Sanger test and target sequence capture test, it also had such advantages as easy operation, short duration, and low cost of consumables, which was worthy of further promotion and adoption.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Proteína BRCA1/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação
20.
Comput Math Methods Med ; 2022: 9111681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966249

RESUMO

Background: Lung cancer is the cancer with the highest morbidity and mortality. Lung adenocarcinoma (LUAD) is a subtype of lung cancer. The aim of this study is to explore the functions of miR-579 and CRABP2 in lung adenocarcinoma. Methods: Cell counting kit-8 (CCK-8) and colony formation assays were applied to calculate cell proliferative abilities. Transwell assay was utilized to measure cell invasive ability. Results: MiR-579 is low expressed in LUAD tissues and cell lines. MiR-579 inhibits cell viability and invasion of lung adenocarcinoma. Knockdown of CRABP2 inhibits cell proliferation and invasion of Calu-3 cells. MiR-579 suppresses cell proliferation and invasion by regulating CRABP2 in Calu-3 cells. Conclusion: Our study reveals that miR-579 acts as a tumor suppressor in LUAD and miR-579 can target and regulate the expression of CRABP2 to mediate cell proliferation and invasion. This study indicates that miR-579 has a potential to be a candidate biomarker for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA