Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704890

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferase , Metiltransferases , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Pharmacol ; 223: 116198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588830

RESUMO

Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Camundongos Nus , Proteína 11 Semelhante a Bcl-2/metabolismo
3.
Life Sci ; 332: 122129, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769804

RESUMO

Ecto-5'-nucleotidase (CD73), encoded by the NT5E gene, mediates tumor immunosuppression and has been targeted for the development of new anticancer drugs. Proteasome inhibitors impair protein degradation by inhibiting proteasome and have been used in the clinic for cancer therapy. Here we report that proteasome inhibitors reduce the protein and mRNA levels of CD73. Among 127 tested small-molecule drugs, proteasome inhibitors were found to consistently decrease the protein and mRNA levels of CD73 in NSCLC NCI-H1299 cells. This effect was further confirmed in different NSCLC cells exposed to different proteasome inhibitors. In those treated cells, the protein levels of ERK and its active form p-ERK, the vital components in the MAPK pathway, were reduced. Consistently, inhibitors of MEK and ERK, another two members of the MAPK pathway, also lowered the protein and mRNA levels of CD73. Correspondingly, treatments with fibroblast growth factor 2 (FGF2), an activator of the MAPK pathway, enhanced the levels of p-ERK and partly rescued the proteasome inhibitor-driven reduction of CD73 mRNA and protein in NSCLC cells. However, exogenous CD73 overexpression in murine Lewis lung carcinoma (LLC) cells was not lowered either in vitro or in vivo, by the treatments with proteasome inhibitors and basically, did not affect their in vitro proliferative inhibition either. In contrast, CD73 overexpression dramatically reduced the in vivo anticancer activity of Bortezomib in immunocompetent mice, with tumor growth inhibition rates from 52.18 % for LLC/vector down to 8.75 % for LLC/NT5E homografts. These findings give new insights into the anticancer mechanisms of proteasome inhibitors.

4.
Eur J Med Chem ; 259: 115709, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567056

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors can selectively kill homologous recombination (HR) deficient cancer cells and elicit anticancer effect through a mechanism of synthetic lethality. In this study, we designed, synthesized and pharmacologically evaluated a series of [1,2,4]triazolo[4,3-a]pyrazine derivatives as a class of potent PARP1 inhibitors. Among them, compounds 17m, 19a, 19c, 19e, 19i and 19k not only displayed more potent inhibitory activities (IC50s < 4.1 nM) than 9 and 1 against PARP1, but also exhibited nanomolar range of antiproliferative effects against MDA-MB-436 (BRCA1-/-, IC50s < 1.9 nM) and Capan-1 (BRCA2-/-, IC50s < 21.6 nM) cells. Notably, 19k significantly inhibited proliferation of resistant Capan-1 cells (IC50s < 0.3 nM). Collectively, the newly discovered PARP1 inhibitors act as a useful pharmacological tool for investigating the mechanism of acquired resistance to PARP1 inhibitors, and may also represent promising therapeutic agents for the treatment of HR deficient cancers with the potential to overcome the acquired resistance.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerase-1 , Neoplasias/tratamento farmacológico , Recombinação Homóloga , Linhagem Celular Tumoral
5.
EMBO Mol Med ; 15(3): e16235, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36652375

RESUMO

Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.


Assuntos
Interferon Tipo I , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Reparo do DNA , Recombinação Homóloga , Interferon Tipo I/genética , Interferon Tipo I/uso terapêutico , Neoplasias/genética , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação , Proteínas de Ligação a RNA/genética , Resistencia a Medicamentos Antineoplásicos
6.
Mol Cancer Res ; 20(12): 1785-1798, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001806

RESUMO

Inhibitors targeting bromodomain and extraterminal (BET) proteins are promising anticancer drugs. The emergence of drug resistance during treatments will impair their therapeutic effectiveness. To investigate the mechanisms of acquired resistance to BET inhibitors (BETi), we generated a series of drug-resistant sublines by exposing non-small cell lung cancer (NSCLC) NCI-H1975 cells to the BETi ABBV-075. These sublines displayed cross-resistance to other tested BETis, increased migration abilities, reduced growth rates accompanied by an increased proportion of cells in G1 phase and decreased apoptotic responses to BETis. Changes in RNA expression and gene mutation profiles in the resistant variants indicate that emergence of BETi resistance is multifactorial. Importantly, all the tested ABBV-075-resistant variants showed loss of vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) and an increase in the antiapoptotic BCL-2 protein. By knockdown, knockout, and reconstitution of VOPP1 in resistant cells, their parental cells, and other NSCLC cells, we confirmed that the loss of VOPP1 contributed to BETi resistance. Moreover, knockout of VOPP1 in the parental cells caused the increased expression of BCL-2, and the latter directly mediated BETi resistance. Through combined treatments with BETis and BCL-2 inhibitors (BCL-2i), we demonstrated that BCL-2is synergistically sensitized resistant cells to BETis. IMPLICATIONS: Based on these results, for the first time, we establish a causal link from VOPP1 loss to BCL-2 gain and then to BETi resistance, which provides new insights into BETi resistance and paves the way for further testing to circumvent BETi resistance.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/genética
7.
Neoplasia ; 32: 100823, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907292

RESUMO

Inhibition of the NEDD8-activating enzyme (NAE), the key E1 enzyme in the neddylation cascade, has been considered an attractive anticancer strategy with the discovery of the first-in-class NAE inhibitor, MLN4924. In this study, we identified SOMCL-19-133 as a highly potent, selective, and orally available NAE inhibitor, which is an analog to AMP. It effectively inhibited NAE with an IC50 value of 0.36 nM and exhibited more than 2855-fold selectivity over the closely related Ubiquitin-activating enzyme (UAE). It is worth noting that treatment with SOMCL-19-133 prominently inhibited Cullin neddylation and delayed the turnover of a panel of Cullin-RING ligases (CRLs) substrates (e.g., Cdt1, p21, p27, and Wee1) at lower effective concentrations than that of MLN4924, subsequently caused DNA damage and Chk1/Chk2 activation, and thus triggered cell cycle arrest and apoptosis. Moreover, SOMCL-19-133 exhibited potent antiproliferative activity against a broad range of human tumor cell lines (mean IC50 201.11 nM), which was about 5.31-fold more potent than that of MLN4924. In vivo, oral delivery treatments with SOMCL-19-133, as well as the subcutaneous injection, led to significant tumor regression in mouse xenograft models. All of the treatments were well tolerated on a continuous daily dosing schedule. Compared with MLN4924, SOMCL-19-133 had a 5-fold higher peak plasma concentration, lower plasma clearance, and a 4-fold larger area under the curve (AUClast). In conclusion, SOMCL-19-133 is a promising preclinical candidate for treating cancers owing to its profound in vitro and in vivo efficacy and favorable pharmacokinetic properties.


Assuntos
Proteínas Culina , Neoplasias , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Camundongos , Proteína NEDD8 , Enzimas Ativadoras de Ubiquitina , Ubiquitinas
8.
Eur J Med Chem ; 240: 114574, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35785724

RESUMO

Based on the reported synthetic lethality of the combination of PARP inhibitor olaparib with the natural product alantolactone, we designed several series of new PARP1 inhibitors by structurally merging both compounds into a single hybrid compound. Among them, compounds 20e and 25a displayed not only high biochemical activity (IC50 = 2.99 nM and 5.91 nM vs 11.36 nM), but also higher inhibitory effects against proliferation of BRCA1-deficient UWB1.289 cells than olaparib (IC50 = 0.27 µM and 0.41 µM vs 0.66 µM). Much weak activity was observed in BRCA1 wild-type human fetal lung IMR-90 and WI-38 cells (IC50s > 10 µM). Treatment with compounds 20e and 25a was found to induce increased levels of γH2AX in a concentration-dependent manner in both MDA-MB-436 and Capan-1 cells to a degree comparable with that of olaparib. Further mechanism study indicated that these compounds activated the cell cycle checkpoints, and subsequently induced G2/M arrest and apoptosis. The results validated that merging PARP inhibitors with other DNA-damage related compounds would produce more potent PARP inhibitors for anticancer studies. However, the poor aqueous solubility and low cell penetration of the current hybrid compounds call for further structural optimization.


Assuntos
Produtos Biológicos , Inibidores de Poli(ADP-Ribose) Polimerases , Apoptose , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Lactonas , Ftalazinas/química , Piperazinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sesquiterpenos de Eudesmano
9.
Am J Cancer Res ; 12(3): 1069-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411247

RESUMO

Colorectal cancer (CRC) is an aggressive malignancy with limited options for treatment. Targeting the bromodomain and extra terminal domain (BET) proteins by using BET inhibitors (BETis) could effectively interrupt the interaction with acetylated histones, inhibit genes transcription and have shown a certain effect on CRC inhibition. To improve the efficacy, the inhibitors of Tankyrases, which cause accumulation of AXIN through dePARsylation, in turn facilitate the degradation of ß-Catenin and suppress the growth of adenomatous polyposis coli (APC)-mutated CRCs, were tested together with BETi as a combination treatment. We examined the effects of BETi and Tankyrases inhibitor (TNKSi) together on the proliferation, cell cycle and apoptosis of human CRCs cell lines with APC or CTNNB1 mutation, and elucidated the underlying molecular mechanisms affected by the double treatment. The result showed that the TNKSi could sensitize all tested CRC cell lines to BETi, and the synergistic effect was not only seen in cell proliferation inhibition, but also confirmed in decreased colony-forming ability and weaken EdU incorporation compared with monotherapy. Combined treatment resulted in enhanced G1 cell cycle arrest and increased apoptosis. In addition, we found ß-Catenin was potentially inhibited by the combination and revealed that both BETi-induced transcriptional inhibition and TNKSi-mediated protein degradation all reduced the ß-Catenin accumulation. In all, the synergistic effects suggest that combination of BETi and TNKSi could provide novel treatment opportunities for CRC, but both TNKSi and combination strategy need to be optimized.

10.
Cancer Biol Ther ; 23(1): 69-82, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35000525

RESUMO

PARP1 and Chk1 inhibitors have been shown to be synergistic in different cancer models in relatively short time treatment modes. However, the consequences of long-term/repeated treatments with the combinations in cancer models remain unclear. In this study, the synergistic cytotoxicity of their combinations in 8 tumor cell lines was confirmed in a 7-day exposure mode. Then, pancreatic Capan-1 cells were repeatedly treated with the PARP1 inhibitor olaparib, the Chk1 inhibitor rabusertib or their combination for 211-214 days, during which the changes in drug sensitivity were monitored at a 35-day interval. Unexpectedly, among the 3 treatment modes, the combination treatments resulted in the highest-grade resistance to Chk1 (~14.6 fold) and PARP1 (~420.2 fold) inhibitors, respectively. Consistently, G2/M arrest and apoptosis decreased significantly in the resulting resistant variants exposed to olaparib. All 3 resistant variants also unexpectedly obtained enhanced migratory and invasive capabilities. Moreover, the combination treatments resulted in increased migration and invasion than olaparib alone. The expression of 124 genes changed significantly in all the resistant variants. We further demonstrate that activating CXCL3-ERK1/2 signaling might contribute to the enhanced migratory capabilities rather than the acquired drug resistance. Our findings indicate that repeated treatments with the rabusertib/olaparib combination result in increased drug resistance and a more aggressive cell phenotype than those with either single agent, providing new clues for future clinical anticancer tests of PARP1 and Chk1 inhibitor combinations.


Assuntos
Apoptose , Inibidores de Poli(ADP-Ribose) Polimerases , Linhagem Celular Tumoral , Resistência a Medicamentos , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
11.
Nat Prod Res ; 36(13): 3324-3330, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33356576

RESUMO

A new diterpenoid with an unusual capnosane skeleton, sinuhumilol A (1), alone with twelve known diverse compounds (2-13), were isolated from the South China Sea soft coral Sinularia humilis. Their structures and stereochemistry were elucidated by extensive spectroscopic analysis, quantum chemical calculations, and/or by the comparison of the spectroscopic data with those reported in the literature. In bioassay, compound 11 exhibited interesting specific cytotoxicity against the human colon adenocarcinoma cell line HT-29 with IC50 value of 12.5 µM.


Assuntos
Adenocarcinoma , Antozoários , Neoplasias do Colo , Diterpenos , Animais , Antozoários/química , China , Diterpenos/química , Diterpenos/farmacologia , Estrutura Molecular
13.
J Med Chem ; 64(9): 6161-6178, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33857374

RESUMO

The ubiquitin-like protein NEDD8 is a critical signaling molecule implicated in the functional maintenance and homeostasis of cells. Dysregulation of this process is involved in a variety of human diseases, including cancer. Therefore, NEDD8-activating enzyme E1 (NAE), the only activation enzyme of the neddylation pathway, has been an emergent anticancer target. In view of the single-agent modest response of the clinical NAE inhibitor, pevonedistat (compound 1, MLN4924), efforts on development of new inhibitors with both high potency and better safety profiles are urgently needed. Here, we report a structural hopping strategy by optimizing the central deazapurine framework and the solvent interaction region of compound 1, leading to compound 26 bearing a pyrimidotriazole scaffold. Compound 26 not only has compatible potency in the biochemical and cell assays but also possesses improved pharmacokinetic (PK) properties than compound 1. In vivo, compound 26 showed significant antitumor efficacy and good safety in xenograft models.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Tirapazamina/química , Tirapazamina/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Cisplatino , Inibidores Enzimáticos/farmacocinética , Humanos , Ifosfamida , Mitomicina , Tirapazamina/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Invest New Drugs ; 39(5): 1213-1221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33710464

RESUMO

G-quadruplexes (G4s) are DNA or RNA structures formed by guanine-rich repeating sequences. Recently, G4s have become a highly attractive therapeutic target for BRCA-deficient cancers. Here, we show that a substituted quinolone amide compound, MTR-106, stabilizes DNA G-quadruplexes in vitro. MTR-106 displayed significant antiproliferative activity in homologous recombination repair (HR)-deficient and PARP inhibitor (PARPi)-resistant cancer cells. Moreover, MTR-106 increased DNA damage and promoted cell cycle arrest and apoptosis to inhibit cell growth. Importantly, its oral and i.v. administration significantly impaired tumor growth in BRCA-deficient xenograft mouse models. However, MTR-106 showed modest activity against talazoparib-resistant xenograft models. In rats, the drug rapidly distributes to tissues within 5 min, and its average concentrations were 12-fold higher in the tissues than in the plasma. Overall, we identified MTR-106 as a novel G-quadruplex stabilizer with high tissue distribution, and it may serve as a potential anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/biossíntese , Proteína BRCA2/biossíntese , Quadruplex G/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/patologia , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Death Dis ; 12(2): 183, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589588

RESUMO

Monotherapy with poly ADP-ribose polymerase (PARP) inhibitors results in a limited objective response rate (≤60% in most cases) in patients with homologous recombination repair (HRR)-deficient cancer, which suggests a high rate of resistance in this subset of patients to PARP inhibitors (PARPi). To overcome resistance to PARPi and to broaden their clinical use, we performed high-throughput screening of 99 anticancer drugs in combination with PARPi to identify potential therapeutic combinations. Here, we found that GSK3 inhibitors (GSK3i) exhibited a strong synergistic effect with PARPi in a panel of colorectal cancer (CRC) cell lines with diverse genetic backgrounds. The combination of GSK3ß and PARP inhibition causes replication stress and DNA double-strand breaks, resulting in increased anaphase bridges and abnormal spindles. Mechanistically, inhibition or genetic depletion of GSK3ß was found to impair the HRR of DNA and reduce the mRNA and protein level of BRCA1. Finally, we demonstrated that inhibition or depletion of GSK3ß could enhance the in vivo sensitivity to simmiparib without toxicity. Our results provide a mechanistic understanding of the combination of PARP and GSK3 inhibition, and support the clinical development of this combination therapy for CRC patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Células HT29 , Células HeLa , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Distribuição Aleatória , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biochem Pharmacol ; 185: 114435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539817

RESUMO

Bromodomain and extra-terminal domain (BET) family proteins are promising anticancer targets. Most BET inhibitors in clinical trials are monovalent. They competitively bind to one of the bromodomains (BD1 and BD2) in BET proteins and exhibit relatively weak anticancer activity, poor pharmacokinetics, and low metabolic stability. Here, we evaluated the anticancer activity of a novel bivalent BET inhibitor, N2817, which consists of two molecules of the monovalent BET inhibitor 8124-053 connected by a common piperazine ring, rendering a long linker unnecessary. Compared with ABBV-075, one of the potent monovalent BET inhibitors reported to date, N2817 showed greater potency in inhibiting proliferation, arresting cell-cycle, inducing apoptosis, and suppressing the growth of tumor xenografts. Moreover, N2817 showed high metabolic stability, a relatively long half-life, and no brain penetration after oral administration. Additionally, N2817 directly bound and inhibited another BD-containing protein, TAF1 (BD2), as evidenced by a reduction in mRNA and protein levels. TAF1 inhibition contributed to the anticancer effect of N2817. Therefore, this study offers a new paradigm for designing bivalent BET inhibitors and introduces a novel potent bivalent BET inhibitor and a new anticancer mechanism.


Assuntos
Antineoplásicos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/antagonistas & inibidores , Fator de Transcrição TFIID/metabolismo , Células A549 , Animais , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Nat Prod Bioprospect ; 11(1): 73-79, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33083968

RESUMO

A phytochemical investigation of the EtOH extract of the flowers of Lagerstroemia indica L. led to the isolation and characterization of a new pyrrole alkaloid, named lagerindicine (1), along with four known compounds (2-5). Their structures were elucidated by the detailed spectroscopic analysis and comparison with literature data, whereas the structure, in particularly, the absolute configuration (AC) of 1, was firmly determined by total synthesis. All the isolates were evaluated for their cytotoxic effects against human colon cancer cell (HCT-116), and compound 3 exhibited weak cytotoxicity with IC50 value of 28.4 µM.

18.
Bioorg Med Chem Lett ; 31: 127710, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246105

RESUMO

A library of new 2-substituted pyrrolo[1,2-b]pyridazine derivatives were rapidly assembled and identified as PARP inhibitors. Structure-activity relationship for this class of inhibitor resulted in the discovery of most potent compounds 15a and 15b that exhibited about 29- and 5- fold selective activity against PARP-1 over PARP-2 respectively. The antiproliferative activity of the as-prepared compounds were demonstrated by further celluar assay in BRCA2-deficient V-C8 and BRCA1-deficient MDA-MB-436 cell lines, displaying that compound 15b could robustly reduce the corresponding cell proliferation and growth with CC50s of 340 and 106 nM respectively. The PK property of 15b was also investigated here.


Assuntos
Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piridazinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Piridazinas/síntese química , Piridazinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
19.
Am J Cancer Res ; 10(9): 2813-2831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042619

RESUMO

Several poly(ADP ribose) polymerase (PARP) inhibitors (PARPi) have been approved for cancer therapy; however, intrinsic and acquired resistance has limited their efficacy in the clinic. In fact, cancer cells have developed multiple mechanisms to overcome PARPi cytotoxicity in even a single cancer cell. In this study, we generated three PARPi-resistant BRCA2-deficient pancreatic Capan-1 variant cells using olaparib (Capan-1/OP), talazoparib (Capan-1/TP), and simmiparib (Capan-1/SP). We identified novel mutations in intron 11 of BRCA2, which resulted in the expression of truncated BRCA2 splice isoforms. Functional studies revealed that only a fraction (32-49%) of PARPi sensitivity could be rescued by depletion of BRCA2 isoforms. In addition, the apoptosis signals (phosphatidylserine eversion, caspase 3/7/8/9 activation, and mitochondrial membrane potential loss) were almost completely abrogated in all PARPi-resistant variants. Consistently, overexpression of the anti-apoptotic proteins cyclooxygenase 2 (COX-2) and baculoviral IAP repeat-containing 3 (BIRC3) occurred in these variants. Depletion of COX-2 or BIRC3 significantly reduced apoptotic resistance in the PARPi-resistant sublines and reversed PARPi resistance by up to 70-72%. Furthermore, exogenous addition of prostaglandin E2, a major metabolic product of COX-2, inhibited PARPi-induced apoptotic signals; however, when combined with the BIRC3 inhibitor LCL161, there was significantly enhanced sensitivity of the resistant variants to PARPi. Finally, PARPi treatment or PARP1 depletion led to a marked increase in the mRNA and protein levels of COX-2 and BIRC3, indicating that PARP1 is a negative transcriptional regulator of these proteins. Together, our findings demonstrated that during the chronic treatment of cells with a PARPi, both BRCA2 intron 11 mutations and COX-2/BIRC3-mediated apoptotic resistance led to PARPi resistance in pancreatic Capan-1 cells.

20.
Bioorg Chem ; 103: 104223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891002

RESUMO

Seven new cembrane-type diterpenes, lobophytolins C-I (3-9), and one new prenylated-guiane-type diterpene, lobophytolin J (10), along with six known related ones (1, 2, 11-14), have been isolated from the soft coral Lobophytum sp. collected off the Xisha Island in the South China Sea. Their structures were elucidated by extensive spectroscopic analysis and quantum mechanical (QM)-NMR methods. The absolute configuration of lobophytolin H (8) was determined by the application of the modified Mosher's method and chemical transformation. Lobophytolin D (4) exhibited promising cytotoxicities in in vitro bioassays against HT-29, Capan-1, A549, and SNU-398 human cancer cell lines with IC50 values of 4.52, 6.62, 5.17, and 6.15 µM, respectively.


Assuntos
Antozoários/química , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Diterpenos/química , Diterpenos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA