Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exploration (Beijing) ; 4(1): 20230034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854495

RESUMO

Plasma etching treatment is an effective strategy to improve the electrocatalytic activity, but the improvement mechanism is still unclear. In this work, a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst is synthesized as the model catalyst, followed by plasma etching treatment with different parameters. The electrocatalytic activity improvement mechanism of the plasma etching treatment is revealed by combining the physicochemical characterizations and electrochemical results. As a result, highly active metal-nitrogen species introduced by nitrogen plasma etching treatment are recognized as the main contribution to the improved electrocatalytic activity, and the defects induced by plasma etching treatment also contribute to the improvement of the electrocatalytic activity. In addition, the prepared catalyst also demonstrates superior ORR activity and stability than the commercial Pt/C catalyst.

2.
ACS Nano ; 17(18): 18128-18138, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37690054

RESUMO

Multimetallic alloys have demonstrated promising performance for the application of metal-air batteries, while it remains a challenge to design multimetallic single-atom catalysts (MM-SACs). Herein, metal-C3N4 and nitrogen-doped carbon are employed as cornerstones to synthesize MM-SACs by a general two-step method, and the inherent features of atomic dispersion and the strong electronic reciprocity between the multimetallic sites have been verified. The trimetallic FeCoZn-SACs and quatermetallic FeCoCuZn-SACs are both found to deliver superior oxygen evolution reaction and oxygen reduction reaction activity, respectively, as well as outstanding bifunctional durability. Density functional theory calculations elucidate the crucial contribution of Co sites of FeCoCuZn-SACs to the efficient catalysis of both the ORR and the OER. More importantly, Zn-air batteries with FeCoCuZn-SACs as cathodic catalysts exhibit a high power density (252 mW cm-2), high specific capacity (817 mAh gZn-1), and considerable stability (over 225 h) for charging-discharging processes. This work provides a visual perspective for the advantages of MM-SACs toward oxygen electrocatalysis.

3.
Adv Sci (Weinh) ; 10(24): e2301566, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341278

RESUMO

Binary single-atom catalysts (BSACs) have demonstrated fascinating activities compared to single atom catalysts (SACs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Notably, Fe SACs is one of the most promising ORR electrocatalysts, and further revealing the synergistic effects between Fe and other 3d transition metals (M) for FeM BSACs are very important to enhance bifunctional performance. Herein, density functional theory (DFT) calculations are first adapted to demonstrate the role of various transition metals on the bifunctional activity of Fe sites, and a notable volcano relationship is established through the generally accepted adsorption free energy that ΔG* OH for ORR, and ΔG* O -ΔG* OH for OER, respectively. Further, ten of the atomically dispersed FeM anchored on nitrogen-carbon support (FeM-NC) are successfully synthesized with typical atomic dispersion by a facile movable type printing method. The experimental data confirms the bifunctional activity diversity of FeM-NC between the early- and late- transition metals, agrees very well with the DFT results. More importantly, the optimal FeCu-NC shows the expected performance with high ORR and OER activity, thereby, the assembled rechargeable zinc-air battery delivers a high power density of 231 mW cm-2 , and an impressive stability that can be stably operated over 300 h.

4.
Small ; 19(2): e2205168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399644

RESUMO

Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2 into value-added products is a promising way to alleviate CO2 emission and relieve the dependence on fossil fuels. Recently, Sn-based catalysts have attracted increasing research attentions due to the merits of low price, abundance, non-toxicity, and environmental benignancy. In this review, the paradigm of nanostructure engineering for efficient electrochemical CO2 reduction (ECO2 R) on Sn-based catalysts is systematically summarized. First, the nanostructure engineering of size, composition, atomic structure, morphology, defect, surficial modification, catalyst/substrate interface, and single-atom structure, are systematically discussed. The influence of nanostructure engineering on the electronic structure and adsorption property of intermediates, as well as the performance of Sn-based catalysts for ECO2 R are highlighted. Second, the potential chemical state changes and the role of surface hydroxides on Sn-based catalysts during ECO2 R are introduced. Third, the challenges and opportunities of Sn-based catalysts for ECO2 R are proposed. It is expected that this review inspires the further development of highly efficient Sn-based catalysts, meanwhile offer protocols for the investigation of Sn-based catalysts.


Assuntos
Dióxido de Carbono , Nanoestruturas , Adsorção , Eletrônica , Engenharia
5.
ChemSusChem ; 16(1): e202201795, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36355035

RESUMO

Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.

6.
Adv Mater ; 34(52): e2200595, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35338536

RESUMO

The large-scale commercialization of proton-exchange-membrane fuel cells (PEMFCs) is extremely limited by their costly platinum-group metals (PGMs) catalysts, which are used for catalyzing the sluggish oxygen reduction reaction (ORR) kinetics at the cathode. Among the reported PGM-free catalysts so far, metal-nitrogen-carbon (M-Nx /C) catalysts hold a great potential to replace PGMs catalysts for the ORR due to their excellent initial activity and low cost. However, despite tremendous progress in this field in the past decade, their further applications are restricted by fast degradation under practical conditions. Herein, the theoretical fundamentals of the stability of the M-Nx /C catalysts are first introduced in terms of thermodynamics and kinetics. The primary degradation mechanisms of M-Nx /C catalysts and the corresponding mitigating strategies are discussed in detail. Finally, the current challenges and the prospects for designing highly stable M-Nx /C catalysts are outlined.

7.
Adv Mater ; 33(39): e2006613, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396608

RESUMO

An effective and universal strategy is developed to enhance the stability of the non-noble-metal M-Nx /C catalyst in proton exchange membrane fuel cells (PEMFCs) by improving the bonding strength between metal ions and chelating polymers, i.e., poly(acrylic acid) (PAA) homopolymer and poly(acrylic acid-maleic acid) (P(AA-MA)) copolymer with different AA/MA ratios. Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) reveal that the optimal P(AA-MA)-Fe-N catalyst with a higher Fe3+ -polymer binding constant possesses longer FeN bonds and exclusive Fe-N4 /C moiety compared to PAA-Fe-N, which consists of ≈15% low-coordinated Fe-N2 /N3 structures. The optimized P(AA-MA)-Fe-N catalyst exhibits outstanding ORR activity and stability in both half-cell and PEMFC cathodes, with the retention rate of current density approaching 100% for the first 37 h at 0.55 V in an H2 -air fuel cell. Density functional theory (DFT) calculations suggest that the Fe-N4 /C site could optimize the difference between the adsorption energy of the Fe atoms on the support (Ead ) and the bulk cohesive energy (Ecoh ) relative to Fe-N2 /N3 moieties, thereby strongly stabilizing Fe centers against demetalation.

8.
Small ; 17(29): e2100735, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145761

RESUMO

Exploiting platinum-group-metal (PGM)-free electrocatalysts with remarkable activity and stability toward oxygen reduction reaction (ORR) is of significant importance to the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs). Here, a high-performance and anti-Fenton reaction cobalt-nitrogen-carbon (Co-N-C) catalyst is reported via employing double crosslinking (DC) hydrogel strategy, which consists of the chemical crosslinking between acrylic acid (AA) and acrylamide (AM) copolymerization and metal coordinated crosslinking between Co2+ and P(AA-AM) copolymer. The resultant DC hydrogel can benefit the Co2+ dispersion via chelated Co-N/O bonds and relieve metal agglomeration during the subsequent pyrolysis, resulting in the atomically dispersed Co-Nx/C active sites. By optimizing the ratio of AA/AM, the optimal P(AA-AM)(5-1)-Co-N catalyst exhibits a high content of nitrogen doping (12.36 at%) and specific surface area (1397 m2 g-1 ), significantly larger than that of the PAA-Co-N catalyst (10.59 at%/746 m2 g-1 ) derived from single crosslinking (SC) hydrogel. The electrochemical measurements reveal that P(AA-AM)(5-1)-Co-N possesses enhanced ORR activity (half-wave potential (E1/2 ) ≈0.820 V versus the reversible hydrogen electrode (RHE)) and stability (≈4 mV shift in E1/2 after 5000 potential cycles in 0.5 m H2 SO4 at 60 ºC) relative to PAA-Co-N, which is higher than most Co-N-C catalysts reported so far.


Assuntos
Carbono , Hidrogéis , Catálise , Eletrodos , Oxigênio
9.
ACS Nano ; 14(8): 10115-10126, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32697910

RESUMO

The sluggish kinetics of lithium polysulfides (LiPS) transformation is recognized as the main obstacle against the practical applications of the lithium-sulfur (Li-S) battery. Inspired by molybdoenzymes in biological catalysis with stable Mo-S bonds, porous Mo-N-C nanosheets with atomically dispersed Mo-N2/C sites are developed as a S cathode to boost the LiPS adsorption and conversion for Li-S batteries. Thanks to its high intrinsic activity and the Mo-N2/C coordination structure, the rate capability and cycling stability of S/Mo-N-C are greatly improved compared with S/N-C due to the accelerated kinetics and suppressed shuttle effect. The S/Mo-N-C delivers a high reversible capacity of 743.9 mAh g-1 at 5 C rate and an extremely low capacity decay rate of 0.018% per cycle after 550 cycles at 2 C rate, outperforming most of the reported cathode materials. Density functional theory calculations suggest that the Mo-N2/C sites can bifunctionally lower the activation energy for Li2S4 to Li2S conversion and the decomposition barrier of Li2S, accounting for its inherently high activity toward LiPS transformation.

10.
Nanoscale ; 12(2): 584-590, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31845694

RESUMO

With high theoretical specific density, low cost, and non-toxicity, Li-S batteries are regarded as a promising candidate for next-generation energy storage systems. However, the shuttling of soluble Li polysulfides (LiPSs) results in self-discharge and rapid capacity degradation. Herein, nitrogen-doped hierarchical porous carbon with embedded highly dispersed vanadium (v)-Nx sites (V-N-C) is developed as a high-performance Li-S battery cathode for the first time. The metal-organic polymer supramolecule structure formed by the electrostatic/hydrogen bond interaction of chitosan-VO3- strongly stabilizes V to generate a high density of V-Nx/C sites. During the discharge/charge process, the unique V-Nx/C active sites can serve as efficient catalysts to accelerate the redox kinetics of LiPSs, while the hierarchical porous carbon structure of V-N-C benefits the diffusion/transfer of Li+/e- and suppresses the shuttling of LiPSs. As a result, the S/V-N-C composite delivers a high specific capacity of 1111.2 mA h g-1 at 0.5C and maintains 573.6 mA h g-1 at 5C with a low capacity decay rate of 0.087% per cycle (over 500 cycles at 1C). The rate performance of the developed V-N-C cathode in Li-S batteries is superior to that of most of the reported M-N-C and carbon material/metal compound composite electrodes.

11.
ACS Appl Mater Interfaces ; 10(43): 36996-37004, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30303003

RESUMO

In this work, monodisperse core/shell Cu/In2O3 nanoparticles (NPs) were developed to boost efficient and tunable syngas formation via electrochemical CO2 reduction for the first time. The efficiency and composition of syngas production on the developed carbon-supported Cu/In2O3 catalysts are highly dependent on the In2O3 shell thickness (0.4-1.5 nm). As a result, a wide H2/CO ratio (4/1 to 0.4/1) was achieved on the Cu/In2O3 catalysts by controlling the shell thickness and the applied potential (from -0.4 to -0.9 V vs reversible hydrogen electrode), with Faraday efficiency of syngas formation larger than 90%. Specifically, the best-performing Cu/In2O3 catalyst demonstrates remarkably large current densities under low overpotentials (4.6 and 12.7 mA/cm2 at -0.6 and -0.9 V, respectively), which are competitive with most of the reported systems for syngas formation. Mechanistic discussion implicates that the synergistic effect between lattice compression and Cu doping in the In2O3 shell may enhance the binding of *COOH on the Cu/In2O3 NP surface, leading to the enhanced CO generation relative to Cu and In2O3 catalysts. This report demonstrates a new strategy to realize efficient and tunable syngas formation via rationally designed core/shell catalyst configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA