Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139979

RESUMO

The rapid worldwide spread of antimicrobial resistance highlights the significant need for the development of innovative treatments to fight multidrug-resistant bacteria. This study describes the potent antimicrobial activity of the novel peptide OMN6 against a wide array of drug-resistant Acinetobacter baumannii clinical isolates. OMN6 prevented the growth of all tested isolates, regardless of any pre-existing resistance mechanisms. Moreover, in vitro serial-passaging studies demonstrated that no resistance developed against OMN6. Importantly, OMN6 was highly efficacious in treating animal models of lung and blood infections caused by multidrug-resistant A. baumannii. Taken together, these results point to OMN6 as a novel antimicrobial agent with the potential to treat life-threatening infections caused by multidrug-resistant A. baumannii avoiding resistance.

2.
Sci Rep ; 11(1): 6603, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758343

RESUMO

New antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Proteínas Citotóxicas Formadoras de Poros/química , Engenharia de Proteínas , Estabilidade Proteica
3.
Cancer Res ; 78(10): 2680-2690, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29490946

RESUMO

Neutrophils play a critical role in cancer, with both protumor and antitumor neutrophil subpopulations reported. The antitumor neutrophil subpopulation has the capacity to kill tumor cells and limit metastatic spread, yet not all tumor cells are equally susceptible to neutrophil cytotoxicity. Because cells that evade neutrophils have greater chances of forming metastases, we explored the mechanism neutrophils use to kill tumor cells. Neutrophil cytotoxicity was previously shown to be mediated by secretion of H2O2 We report here that neutrophil cytotoxicity is Ca2+ dependent and is mediated by TRPM2, a ubiquitously expressed H2O2-dependent Ca2+ channel. Perturbing TRPM2 expression limited tumor cell proliferation, leading to attenuated tumor growth. Concomitantly, cells expressing reduced levels of TRPM2 were protected from neutrophil cytotoxicity and seeded more efficiently in the premetastatic lung.Significance: These findings identify the mechanism utilized by neutrophils to kill disseminated tumor cells and to limit metastatic spread. Cancer Res; 78(10); 2680-90. ©2018 AACR.


Assuntos
Neoplasias da Mama/patologia , Canais de Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Neoplásicas Circulantes/imunologia , Neutrófilos/imunologia , Canais de Cátion TRPM/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Neoplásicas Circulantes/patologia , Neutrófilos/metabolismo , Canais de Cátion TRPM/genética
4.
Oncoimmunology ; 6(11): e1356965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147615

RESUMO

The role of neutrophils in tumor progression has become in recent years a subject of growing interest. Tumor-associated neutrophils (TANs), which constitute an important portion of the tumor microenvironment, promote immunosuppression in advanced tumors by modulating the proliferation, activation and recruitment of a variety of immune cell types. Studies which investigated the consequences of manipulating TAN polarization suggest that the impact of these neutrophils on tumor progression is considerably mediated by and dependent on the presence of CD8 T-cells. It has been previously shown that granulocytic myeloid regulatory cells, i.e. TANs and granulocytic myeloid-derived suppressor cells (G-MDSCs) are capable of suppressing CD8 T-cell proliferation and affect their activation. In the current study, we find that in addition, TANs isolated from different models of murine cancer promote immunosuppression by strongly inducing CD8 T-cell apoptosis. We demonstrate that the TNFα pathway in TANs is critical for the induction of apoptosis, and that the mechanism through which apoptosis is induced involves the production of NO, but not ROS. In the absence of pre-activation, TANs are capable of activating CD8 T-cells, but specifically induce the apoptosis of non-activated CD8+CD69- cells. Despite this contradictive effect on T-cell function, we show in vivo that TANs suppress the anti-tumor effect of CD8 T-cells and abolish their ability to delay tumor growth. Our results add another important layer on the understanding of the possible mechanisms by which TANs regulate the anti-tumor immune response mediated by CD8 T-cells, therefore promoting a tumor-supportive environment.

5.
Oncoimmunology ; 4(4): e998469, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26137413

RESUMO

It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL.

6.
Cell Rep ; 10(4): 562-73, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25620698

RESUMO

Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-ß-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.


Assuntos
Neoplasias/patologia , Neutrófilos/citologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia
7.
Int J Cancer ; 135(5): 1178-86, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501019

RESUMO

The mechanisms by which tumor-associated neutrophils (TANs) affect tumor growth are to a large extent unknown. Regulatory T-cells (T-regs) are functionally immune-suppressive subsets of T-cells. Depletion or inhibition of T-regs can enhance antitumor immunity. We demonstrated both by RT-PCR and by ELISA that murine TANs secrete significant amounts of the T-regs chemoattractant, CCL17, much more than circulating or splenic neutrophils, and at a level progressively increasing during tumor development. Migration assays, both in vitro and in vivo, showed recruitment of T-regs by TANs, which was inhibited with anti-CCL17 monoclonal antibodies. Systemic neutrophil depletion in tumor-bearing mice using anti-Ly6G monoclonal antibodies reduced the migration of T-regs into the tumors. We further showed, using flow cytometry, that CCL17 secretion by TANs is not limited to mouse models of cancer but is also relevant to human TANs. Our results suggest a new indirect mechanism by which TANs may inhibit antitumor immune activity, thus promoting tumor growth. We further describe, for the first time, a clear link between TANs and T-regs acting together to impair antitumor immunity.


Assuntos
Quimiocina CCL17/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos Ly/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Humanos , Ativação Linfocitária/imunologia , Depleção Linfocítica , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
8.
Cancer Immunol Immunother ; 62(11): 1745-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24092389

RESUMO

The role and characteristics of tumor-associated neutrophils (TAN) in cancer are poorly defined. We have recently shown that TAN can have anti-tumorigenic (N1) or pro-tumorigenic (N2) functions. An interesting unanswered question is how the phenotype of TAN is influenced by the ongoing evolvement of tumor microenvironment. We therefore studied the phenotype and effects of TAN at different time points during tumor progression. We used two models of murine tumor cancer cell lines-Lewis lung carcinoma (LLC) and AB12 (mesothelioma). Neutrophils were studied at early and late stages and compared to each other and to neutrophils from bone marrow/periphery of naïve mice. Although there was no difference in the number of neutrophils entering the tumor, we found that at early stages of tumor development, neutrophils were almost exclusively at the periphery of the tumor. Only at later stages, neutrophils were also found scattered among the tumor cells. We further found that TAN from early tumors are more cytotoxic toward tumor cells and produce higher levels of TNF-α, NO and H2O2. In established tumors, these functions are down-regulated and TAN acquire a more pro-tumorigenic phenotype. In line with this phenotype, only depletion of neutrophils at later stages of tumor development inhibited tumor growth, possibly due to their central location in the tumor. Our work adds another important layer to the understanding of neutrophils in cancer by further characterizing the changes in TAN during time. Additional research on the functional role of TAN and differences between subsets of TAN is currently underway.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Experimentais/imunologia , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Progressão da Doença , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Peróxido de Hidrogênio/imunologia , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Carga Tumoral/genética , Carga Tumoral/imunologia , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA