Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 20(6): 1246-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369406

RESUMO

An uncontrolled trial reported that sodium thiosulfate reduces formation of calcium kidney stones in humans, but this has not been established in a controlled human study or animal model. Using the genetic hypercalciuric rat, an animal model of calcium phosphate stone formation, we studied the effect of sodium thiosulfate on urine chemistries and stone formation. We fed genetic hypercalciuric rats normal food with or without sodium thiosulfate for 18 wk and measured urine chemistries, supersaturation, and the upper limit of metastability of urine. Eleven of 12 untreated rats formed stones compared with only three of 12 thiosulfate-treated rats (P < 0.002). Urine calcium and phosphorus were higher and urine citrate and volume were lower in the thiosulfate-treated rats, changes that would increase calcium phosphate supersaturation. Thiosulfate treatment lowered urine pH, which would lower calcium phosphate supersaturation. Overall, there were no statistically significant differences in calcium phosphate supersaturation or upper limit of metastability between thiosulfate-treated and control rats. In vitro, thiosulfate only minimally affected ionized calcium, suggesting a mechanism of action other than calcium chelation. In summary, sodium thiosulfate reduces calcium phosphate stone formation in the genetic hypercalciuric rat. Controlled trials testing the efficacy and safety of sodium thiosulfate for recurrent kidney stones in humans are needed.


Assuntos
Antioxidantes/uso terapêutico , Nefrolitíase/prevenção & controle , Tiossulfatos/uso terapêutico , Animais , Ânions/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/urina , Nefrolitíase/urina , Ratos , Tiossulfatos/urina , Urinálise
2.
J Bone Miner Res ; 22(6): 907-17, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17352658

RESUMO

UNLABELLED: Chronic metabolic acidosis induces net Ca efflux from bone; this osteoclastic bone resorption is mediated by increased osteoblastic prostaglandin synthesis. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, is present in both constitutive (COX-1) and inducible (COX-2) forms. We report here that acidosis increases both osteoblastic RNA and protein levels for COX-2 and that genetic deficiency or pharmacologic inhibition of COX-2 significantly reduces acid-induced Ca efflux from bone. INTRODUCTION: Incubation of neonatal mouse calvariae in medium simulating physiologic metabolic acidosis induces an increase in osteoblastic prostaglandin E2 (PGE2) release and net calcium (Ca) efflux from bone. Increased PGE2 is necessary for acid-induced bone resorption, because inhibition of cyclooxygenase activity with indomethacin significantly decreases not only PGE2 production but also Ca release. Cyclooxygenase is present in both constitutive (COX-1) and inducible (COX-2) forms. Because COX-2 activity has been implicated in several forms of pathological bone resorption, we tested the hypothesis that COX-2 is critical for acid-induced, cell-mediated bone Ca efflux. MATERIALS AND METHODS: To determine the effect of metabolic acidosis on COX-2 RNA and protein, primary cells isolated from neonatal CD-1 mouse calvariae were cultured in neutral (Ntl) or physiologically acidic medium (Met). RNA levels for COX-2 and COX-1 were measured by quantitative real-time PCR. Levels of COX-2 and COX-1 protein were measured by immunoblot analysis. To determine the effect of acidosis on bone Ca efflux in genetically deficient COX-2 mice, mice heterozygous for the COX-2 knockout (strain B6;129S7-Ptgs2(tm1Jed)/J) were used as breeders, and neonatal calvariae were cultured in Ntl or Met. To determine the effects of the specific COX-2 inhibitor, NS398, on acid-induced bone resorption, CD-1 calvariae were incubated in Ntl or Met with or without NS398 (1 microM). Medium PGE2 was assayed by ELISA. RESULTS: Incubation of mouse calvarial cells in Met significantly increased COX-2 RNA and protein levels without a change in COX-1. Increased COX-2 protein levels in response to Met were also observed in cultured calvariae. Acid-induced, cell-mediated Ca efflux from B6;129S7-Ptgs2(tm1Jed)/J calvariae was dependent on genotype. From 0 to 24 h, when physicochemical Ca efflux predominates, Met significantly increased net Ca efflux in all genotypes. After 24 h, when cell-mediated Ca efflux predominates, Met induced greater Ca efflux from (+/+) than from (+/-), and there was no increase from (-/-). In calvariae from CD-1 mice, NS398 significantly inhibited both the acid-induced increase in PGE2 and Ca release. CONCLUSIONS: The specific acid-induced increase in COX-2 RNA and protein levels and the dependency of the increased Ca efflux on COX-2 activity, as determined by both genetic deficiency and pharmacologic inhibition, show that COX-2 is critical for acid-induced, cell-mediated bone resorption.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Acidose/metabolismo , Animais , Animais Recém-Nascidos , Reabsorção Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Expressão Gênica/efeitos dos fármacos , Genótipo , Concentração de Íons de Hidrogênio , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Nitrobenzenos/farmacologia , Técnicas de Cultura de Órgãos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , RNA/genética , RNA/metabolismo , Crânio/citologia , Crânio/efeitos dos fármacos , Crânio/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA