Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38464106

RESUMO

Skin has been shown to be a regulatory hub for energy expenditure and metabolism: mutations of skin lipid metabolism enzymes can change the rate of thermogenesis and susceptibility to diet-induced obesity. However, little is known about the physiological basis for this function. Here we show that the thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We found that skin was the largest target in a mouse body for dietary fat delivery, and that fat was assimilated both by epidermis and by dermal white adipose tissue. Dietary triglyceride acyl groups persist in skin for weeks after feeding. Using multi-modal lipid profiling, we have implicated both keratinocytes and sebocytes in the altered lipids which correlate with thermal function. In response to high fat feeding, wax diesters and ceramides accumulate, and triglycerides become more saturated. In contrast, in response to the dramatic loss of adipose tissue that accompanies restriction of the branched chain amino acid isoleucine, skin becomes highly heat-permeable: skins shows limited uptake of dietary lipids and editing of wax esters, and acquires a signature of depleted signaling lipids, which include the acyl carnitines and lipid ethers. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.

2.
Biochimie ; 210: 82-98, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36372307

RESUMO

Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.


Assuntos
Obesidade , Fosfolipídeos , Animais , Camundongos , Umidade , Reprodutibilidade dos Testes , Temperatura , Obesidade/metabolismo , Fosfolipídeos/metabolismo , Tecido Adiposo Marrom/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA