Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503727

RESUMO

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Assuntos
Vigilância Imunológica , Sequências Reguladoras de Ácido Nucleico , Divisão Celular , Linhagem Celular Tumoral , Cromatina
2.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36409826

RESUMO

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Fucose/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
3.
J Mol Neurosci ; 71(3): 662-674, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32856205

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by expansions of a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is associated with the progressive loss of lower motor neurons, together with muscle weakness and atrophy. PolyQ-AR is converted to a toxic species upon binding to its natural ligands, testosterone, and dihydrotestosterone (DHT). Our previous patch-clamp studies on a motor neuron-derived cell model of SBMA showed alterations in voltage-gated ion currents. Here, we identified and characterized chloride currents most likely belonging to the chloride channel-2 (ClC-2) subfamily, which showed significantly increased amplitudes in the SBMA cells. The treatment with the pituitary adenylyl cyclase-activating polypeptide (PACAP), a neuropeptide with a proven protective effect in a mouse model of SBMA, recovered chloride channel current alterations in SBMA cells. These observations suggest that the CIC-2 currents are affected in SBMA, an alteration that may contribute and potentially determine the pathophysiology of the disease.


Assuntos
Atrofia Bulboespinal Ligada ao X/metabolismo , Canais de Cloreto/metabolismo , Potenciais de Ação , Animais , Canais de Cloro CLC-2 , Células Cultivadas , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia
4.
Nat Genet ; 52(12): 1397-1411, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169020

RESUMO

The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.


Assuntos
Anormalidades Múltiplas/genética , Núcleo Celular/fisiologia , Cromatina/metabolismo , Face/anormalidades , Haploinsuficiência/genética , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/genética , Doenças Vestibulares/genética , Células 3T3 , Animais , Linhagem Celular , Linhagem da Célula/genética , Condrócitos/citologia , Condrogênese/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Osteócitos/citologia , Osteogênese/genética , Proteínas do Grupo Polycomb/genética , Estresse Mecânico
5.
Biophys Chem ; 229: 68-76, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28511915

RESUMO

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a motor neuron disease caused by the expansion of a polymorphic CAG tandem repeat encoding a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is triggered by the binding of mutant AR to its natural ligands, testosterone and dihydrotestosterone (DHT). To investigate the neuronal alterations of motor neuron cell models of SBMA, we applied patch-clamp methods to verify how polyQ expansions in the AR alter cell ionic currents. We used mouse motoneuron-derived MN-1 cells expressing normal AR (MN24Q) and mutant AR (MN100Q treated cells with vehicle EtOH and DHT). We observed a reduction of the current flux mainly at depolarizing potentials in the DHT-treated cells, while the dissection of macroscopic currents showed single different cationic currents belonging to voltage-gated channels. Also, we treated the cells with IGF-1 and PACAP, which have previously been shown to protect MN-1 cells from the toxicity of mutant AR, and we found an amelioration of the altered currents. Our results suggest that the electrophysiological correlate of SBMA is a suitable reference point for the identification of disease symptoms and for future therapeutic targets.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Modelos Biológicos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Camundongos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/patologia , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Potássio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sequências de Repetição em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA