Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17286, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287749

RESUMO

Mesozooplankton is a key component of the ocean, regulating global processes such as the carbon pump, and ensuring energy transfer from lower to higher trophic levels. Yet, knowledge on mesozooplankton diversity, distribution and connectivity at global scale is still fragmented. To fill this gap, we applied DNA metabarcoding to mesozooplankton samples collected during the Malaspina-2010 circumnavigation expedition across the Atlantic, Indian and Pacific oceans from the surface to bathypelagic depths. We highlight the still scarce knowledge on global mesozooplankton diversity and identify the Indian Ocean and the deep sea as the oceanic regions with the highest proportion of hidden diversity. We report no consistent alpha-diversity patterns for mesozooplankton at a global scale, neither across vertical nor horizontal gradients. However, beta-diversity analysis suggests horizontal and vertical structuring of mesozooplankton communities mostly attributed to turnover and reveals an increase in mesozooplankton beta-diversity with depth, indicating reduced connectivity at deeper layers. Additionally, we identify a water mass type-mediated structuring of mesozooplankton bathypelagic communities instead of an oceanic basin-mediated as observed at upper layers. This suggests limited dispersal at deep ocean layers, most likely due to weaker currents and lower mixing of water mass types, thus reinforcing the importance of oceanic currents and barriers to dispersal in shaping global plankton communities.

2.
Ecol Evol ; 13(10): e10608, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869427

RESUMO

Studies on host-parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of Corynosoma (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected Corynosoma population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity. Our results showed that Corynosoma species diversity reflected host colonization histories and population sizes, with four species being present in the Arctic, three in the Baltic Sea, two in Lake Ladoga, and only one in Lake Saimaa. We found statistically significant population-genetic differentiation within all three Corynosoma species that occur in more than one seal (sub)species. Genetic diversity tended to be high in Corynosoma populations originating from Arctic ringed seals and low in the landlocked populations. Our results indicate that acanthocephalan communities in landlocked seal populations are impoverished with respect to both species and intraspecific genetic diversity. Interestingly, the loss of genetic diversity within Corynosoma species seems to have been less drastic than in their seal hosts, possibly due to their large local effective population sizes resulting from high infection intensities and effective intra-host population mixing. Our study highlights the utility of genomic methods in investigations of community composition and genetic diversity of understudied parasites.

3.
Mol Ecol ; 32(7): 1791-1809, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626108

RESUMO

Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.


Assuntos
Evolução Biológica , Himenópteros , Animais , Himenópteros/genética , Insetos , Filogenia , Plantas/parasitologia , Genômica , Folhas de Planta/genética
4.
Sci Data ; 9(1): 667, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329035

RESUMO

We provide the first whole genome sequences from three specimens of the mountain hare subspecies the heath hare (Lepus timidus sylvaticus), along with samples from two mountain hares (Lepus timidus timidus) and two brown hares (Lepus europaeus) from Sweden. The heath hare has a unique grey winter pelage as compared to other mountain hares (white) and brown hares (mostly brown), and face regional extinction, likely due to competitive exclusion from the non-native brown hare. Whole genome resequencing from the seven hare specimens were mapped to the Lepus timidus pseudoreference genome and used for detection of 11,363,883 polymorphic nucleotide positions. The data presented here could be useful for addressing local adaptations and conservation status of mountain hares and brown hares in Sweden, including unique subspecies.


Assuntos
Lebres , Animais , Genoma , Lebres/genética , Polimorfismo Genético , Análise de Sequência de DNA , Suécia
5.
Int J Parasitol Parasites Wildl ; 15: 255-261, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34277335

RESUMO

Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name.

6.
Genome ; 64(6): 615-626, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33825503

RESUMO

While free-living herbivorous insects are thought to harbor microbial communities composed of transient bacteria derived from their diet, recent studies indicate that insects that induce galls on plants may be involved in more intimate host-microbe relationships. We used 16S rDNA metabarcoding to survey larval microbiomes of 20 nematine sawfly species that induce bud or leaf galls on 13 Salix species. The 391 amplicon sequence variants (ASVs) detected represented 69 bacterial genera in six phyla. Multi-variate statistical analyses showed that the structure of larval microbiomes is influenced by willow host species as well as by gall type. Nevertheless, a "core" microbiome composed of 58 ASVs is shared widely across the focal galler species. Within the core community, the presence of many abundant, related ASVs representing multiple distantly related bacterial taxa is reflected as a statistically significant effect of bacterial phylogeny on galler-microbe associations. Members of the core community have a variety of inferred functions, including degradation of phenolic compounds, nutrient supplementation, and production of plant hormones. Hence, our results support suggestions of intimate and diverse interactions between galling insects and microbes and add to a growing body of evidence that microbes may play a role in the induction of insect galls on plants.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Microbiota/fisiologia , Filogenia , Salix/microbiologia , Animais , Biodiversidade , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Insetos , Larva , Reguladores de Crescimento de Plantas , Folhas de Planta , RNA Ribossômico 16S/genética
7.
Mol Ecol Resour ; 19(3): 570-585, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30203521

RESUMO

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.


Assuntos
Cromossomos , Peixes/genética , Ordem dos Genes , Animais , Biologia Computacional , Genômica , Oceano Pacífico , Análise de Sequência de DNA
8.
PLoS One ; 13(12): e0208223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540793

RESUMO

Deserts, such as those found in Saudi Arabia, are one of the most hostile places for plant growth. However, desert plants are able to impact their surrounding microbial community and select beneficial microbes that promote their growth under these extreme conditions. In this study, we examined the soil, rhizosphere and endosphere bacterial communities of four native desert plants Tribulus terrestris, Zygophyllum simplex, Panicum turgidum and Euphorbia granulata from the Southwest (Jizan region), two of which were also found in the Midwest (Al Wahbah area) of Saudi Arabia. While the rhizosphere bacterial community mostly resembled that of the highly different surrounding soils, the endosphere composition was strongly correlated with its host plant phylogeny. In order to assess whether any of the native bacterial endophytes might have a role in plant growth under extreme conditions, we analyzed the properties of 116 cultured bacterial isolates that represent members of the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Our analysis shows that different strains have highly different biochemical properties with respect to nutrient acquisition, hormone production and growth under stress conditions. More importantly, eleven of the isolated strains could confer salinity stress tolerance to the experimental model plant Arabidopsis thaliana suggesting some of these plant-associated bacteria might be useful for improving crop desert agriculture.


Assuntos
Bactérias/metabolismo , Clima Desértico , Actinobacteria/fisiologia , Arabidopsis/microbiologia , Bacteroidetes/fisiologia , Endófitos , Euphorbia/fisiologia , Firmicutes/fisiologia , Panicum/fisiologia , Proteobactérias/fisiologia , Rizosfera , Arábia Saudita , Microbiologia do Solo , Tribulus/fisiologia , Zygophyllum/fisiologia
9.
Front Plant Sci ; 9: 1402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349549

RESUMO

Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium 'LA0480.' Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The 'LA0480' genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the 'LA0480' protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in 'LA0480.' Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.

10.
Sci Adv ; 4(8): eaat2142, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30116782

RESUMO

The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research has focused on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, that is, the study of heritable changes that do not involve changes in the DNA sequence, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We found that methylated genes are marked by histone 3 lysine 36 trimethylation (H3K36me3) and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes, such as immunity, apoptosis, phagocytosis recognition, and phagosome formation, and reveal intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis that responds to symbiosis.


Assuntos
Antozoários/fisiologia , Metilação de DNA , Regulação da Expressão Gênica , Homeostase , Anêmonas-do-Mar/genética , Simbiose/genética , Transcriptoma , Animais , Modelos Biológicos , Anêmonas-do-Mar/parasitologia
11.
Sci Adv ; 4(6): eaar8028, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29881778

RESUMO

There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.


Assuntos
Aclimatação , Antozoários/genética , Recifes de Corais , Epigênese Genética , Concentração de Íons de Hidrogênio , Fenótipo , Animais , Antozoários/metabolismo , Carbonatos/metabolismo , Mudança Climática , Metilação de DNA , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Água do Mar , Estresse Fisiológico , Transcrição Gênica
12.
Mol Ecol ; 27(2): 403-418, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218749

RESUMO

Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here, we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis.


Assuntos
Genoma/genética , MicroRNAs/genética , Transcriptoma/genética , Animais , Cnidários/genética , Cnidários/fisiologia , Recifes de Corais , Dinoflagellida/genética , Dinoflagellida/fisiologia , Fotossíntese , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/fisiologia , Simbiose/genética
13.
Sci Adv ; 3(11): eaao4709, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29134201

RESUMO

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.


Assuntos
Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/química , Animais , Arrestina/classificação , Arrestina/genética , Evolução Biológica , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Peixes , Opsinas/classificação , Opsinas/genética , Filogenia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/química , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transcriptoma , Transducina/classificação , Transducina/genética
14.
PLoS One ; 12(8): e0182503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771590

RESUMO

An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 µm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69-94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/anatomia & histologia , Peixes/classificação , Animais , Proteínas de Peixes/genética , Peixes/genética , Oceano Índico , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Filogenia , Dinâmica Populacional , Arábia Saudita , Estações do Ano , Análise de Sequência de DNA/métodos
16.
Nature ; 542(7641): 307-312, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178233

RESUMO

Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.


Assuntos
Chenopodium quinoa/genética , Genoma de Planta/genética , Processamento Alternativo/genética , Diploide , Evolução Molecular , Pool Gênico , Anotação de Sequência Molecular , Mutação , Poliploidia , Saponinas/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 7: 40579, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094347

RESUMO

Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60-76% and 81-90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.


Assuntos
Adaptação Biológica , Organismos Aquáticos/microbiologia , Gammaproteobacteria/genética , Genoma Bacteriano , Simbiose , Biologia Computacional/métodos , Gammaproteobacteria/classificação , Ontologia Genética , Metagenoma , Metagenômica/métodos , Anotação de Sequência Molecular , Filogenia , Recombinação Genética
18.
ISME J ; 11(1): 186-200, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392086

RESUMO

Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.


Assuntos
Antozoários/microbiologia , Gammaproteobacteria/fisiologia , Simbiose , Animais , Antozoários/classificação , Recifes de Corais , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genótipo , Hibridização in Situ Fluorescente
19.
Mar Pollut Bull ; 114(2): 679-688, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27784536

RESUMO

Biotic indices for monitoring marine ecosystems are mostly based on the analysis of benthic macroinvertebrate communities. Due to their high sensitivity to pollution and fast response to environmental changes, bacterial assemblages could complement the information provided by benthic metazoan communities as indicators of human-induced impacts, but so far, this biological component has not been well explored for this purpose. Here we performed 16S rRNA gene amplicon sequencing to analyze the bacterial assemblage composition of 51 estuarine and coastal stations characterized by different environmental conditions and human-derived pressures. Using the relative abundance of putative indicator bacterial taxa, we developed a biotic index that is significantly correlated with a sediment quality index calculated on the basis of organic and inorganic compound concentrations. This new index based on bacterial assemblage composition can be a sensitive tool for providing a fast environmental assessment and allow a more comprehensive integrative ecosystem approach for environmental management.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Flavobacterium/efeitos dos fármacos , Sedimentos Geológicos/química , Proteobactérias/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , DNA Bacteriano/genética , Ecologia , Ecossistema , Flavobacterium/genética , Sedimentos Geológicos/microbiologia , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Proteobactérias/genética , RNA Ribossômico 16S/genética , Água do Mar/química , Água do Mar/microbiologia , Espanha
20.
Genome Biol Evol ; 8(3): 665-80, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26868597

RESUMO

Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages ("Clades A-I") and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades-the equivalent of contrasting genera or families in other dinoflagellate groups-making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ∼20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e., cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and interindividual variation in nonmodel organisms.


Assuntos
Antozoários/genética , Dinoflagellida/genética , Filogenia , Simbiose/genética , Animais , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Regulação da Expressão Gênica , Genótipo , Fotossíntese/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA