Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1244, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066195

RESUMO

Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.


Assuntos
Leishmania , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Insetos Vetores/genética , Europa (Continente)
2.
Sci Rep ; 13(1): 12840, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553350

RESUMO

Early detection of pathogens in vectors is important in preventing the spread of arboviral diseases, providing a timely indicator of pathogen circulation before outbreaks occur. However, entomological surveillance may face logistical constraints, such as maintaining the cold chain, and resource limitations, such as the field and laboratory workload of mosquito processing. We propose an FTA card-based trapping system that aims to simplify both field and laboratory phases of arbovirus surveillance. We modified a BG-Sentinel trap to include a mosquito collection chamber and a sugar feeding source through an FTA card soaked in a long-lasting viscous solution of honey and hydroxy-cellulose hydrogel. The FTA card ensures environmental preservation of nucleic acids, allowing continuous collection and feeding activity of specimens for several days and reducing the effort required for viral detection. We tested the trap prototype during two field seasons (2019 and 2021) in North-eastern Italy and compared it to CDC-CO2 trapping applied in West Nile and Usutu virus regional surveillance. Collections by the BG-FTA approach detected high species diversity, including Culex pipiens, Aedes albopictus, Culex modestus, Anopheles maculipennis sensu lato and Ochlerotatus caspius. When used for two-days sampling, the BG-FTA trap performed equally to CDC also for the WNV-major vector Cx. pipiens. The FTA cards detected both WNV and USUV, confirming the reliability of this novel approach to detect viral circulation in infectious mosquitoes. We recommend this surveillance approach as a particularly useful alternative in multi-target surveillance, for sampling in remote areas and in contexts characterized by high mosquito densities and diversity.


Assuntos
Aedes , Infecções por Arbovirus , Culex , Flavivirus , Vírus do Nilo Ocidental , Animais , Reprodutibilidade dos Testes , Mosquitos Vetores , Infecções por Arbovirus/diagnóstico
3.
Parasit Vectors ; 16(1): 223, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415250

RESUMO

BACKGROUND: Aedes koreicus is a mosquito species native to East Asia which has recently invaded several countries in Europe. In Italy, this mosquito was first detected in the North-East in 2011 and is now widely distributed in the entire northern part of the country. The development of specific genetic markers, such as microsatellites, is necessary to uncover the dispersal routes of this mosquito from its native areas and, eventually, to plan future control interventions. METHODS: Available raw sequences of genomic DNA of Ae. koreicus were screened in silico using BLASTn to identify possible microsatellite-containing sequences. Specific primer pairs were then designed, and their efficiency was determined through polymerase chain reaction (PCR) on 32 individuals of Ae. koreicus collected in Italy. PCR conditions were optimised in three multiplex reactions. Genotyping of individual mosquitoes was performed on both single and multiplex PCR reactions. Finally, analysis of intra-population variation was performed to assess the level of polymorphism of the markers. RESULTS: Mosquito genotyping provided consistent results in both single and multiplex reactions. Out of the 31 microsatellite markers identified in the Ae. koreicus genome raw sequences, 11 were polymorphic in the examined mosquito samples. CONCLUSIONS: The results show that the 11 microsatellite markers developed here hold potential for investigating the genetic structure of Ae. koreicus populations. These markers could thus represent a novel and useful tool to infer the routes of invasion of this mosquito species into Europe and other non-native areas.


Assuntos
Aedes , Humanos , Animais , Aedes/genética , Europa (Continente) , Itália , Polimorfismo Genético , Repetições de Microssatélites , Mosquitos Vetores/genética , Espécies Introduzidas
4.
PLoS One ; 17(8): e0269880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913994

RESUMO

BACKGROUND: The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species' biology, behavior, and dispersal patterns were poorly investigated to date. METHODOLOGY/PRINCIPAL FINDINGS: To understand the species' population relationships and dispersal patterns within Europe, a fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected. CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of 'Single Nucleotide Polymorphism' markers. Considering its public health importance, it is crucial to further investigate the species' population genetic dynamic, including a larger sampling and additional genomic markers.


Assuntos
Aedes , Aedes/genética , Animais , Vetores de Doenças , Europa (Continente) , Variação Genética , Espécies Introduzidas , Mosquitos Vetores/genética
5.
Euro Surveill ; 27(29)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35866436

RESUMO

In spring 2022, Europe faced an unprecedented heatwave, increasing the risk of West Nile virus (WNV) outbreaks. As early as 7 June 2022, WNV was detected in Culex mosquitoes in northern Italy, and - in the following days - in two blood donors, a patient with encephalitis, wild birds and additional mosquito pools. Genome sequencing demonstrated co-circulation of WNV lineage 2 and a newly introduced WNV lineage 1, which was discovered in the region in 2021.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Surtos de Doenças , Humanos , Itália/epidemiologia , Estações do Ano , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética
6.
Insects ; 13(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206789

RESUMO

The emerging distribution of new alien mosquito species was recently described in Europe. In addition to the invasion of Aedes albopictus, several studies have focused on monitoring and controlling other invasive Aedes species, as Aedes koreicus and Aedes japonicus. Considering the increasing development of insecticide resistance in Aedes mosquitoes, new control strategies, including the use of bacterial host symbionts, are proposed. However, little is known about the bacterial communities associated with these species, thus the identification of possible candidates for Symbiotic Control is currently limited. The characterization of the natural microbiota of field-collected Ae. koreicus mosquitoes from North-East Italy through PCR screening, identified native infections of Wolbachia in this species that is also largely colonized by Asaia bacteria. Since Asaia and Wolbachia are proposed as novel tools for Symbiotic Control, our study supports their use for innovative control strategies against new invasive species. Although the presence of Asaia was previously characterized in Ae. koreicus, our study characterized this Wolbachia strain, also inferring its phylogenetic position. The co-presence of Wolbachia and Asaia may provide additional information about microbial competition in mosquito, and to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction in Ae. koreicus.

7.
Med Mycol Case Rep ; 35: 51-53, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35169536

RESUMO

Canine eumycetoma is a rare granulomatous disease caused by dematiaceous fungi. A 2-year-old Great Dane dog had a subcutaneous mass in the right thigh that was surgically removed. Grossly, numerous black-grains were visible. Histologically subcutaneous pyogranulomas were centered on myriads of pigmented fungal elements. Madurella pseudomycetomatis was molecularly characterized.

8.
Vet Parasitol Reg Stud Reports ; 27: 100676, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012715

RESUMO

Canine leishmaniosis (CanL) is an emerging zoonosis caused by Leishmania infantum and transmitted in southern Europe by phlebotomine sand flies of the subgenus Phlebotomus (Larroussius). Endemic foci of CanL have been recorded in northern continental Italy since early 1990s and attributed to the northward expansion of vector populations due to climatic changes in association with travelling/relocated infected dogs from the southern Mediterranean littoral. In this study, further spread of endemic Leishmania foci was monitored during 2018-2019 in five regions (Aosta Valley, Piedmont, Lombardy, Veneto and Friuli-Venezia Giulia), with focus to territories where investigations were not performed, or they have been inconclusive. Clinical cases of CanL identified by local veterinary practitioners and confirmed by reference diagnosis centers were regarded as autochthonous if their origin from, or travel to, areas endemic for CanL were excluded in the previous ≥2 years. Around these index cases, i) serosurveys for L infantum were carried out where indicated, ii) sampling from potential autochthonous cases in healthy or clinically-suspected resident dogs was intensified by collaborating veterinary practitioners, and iii) suitable sites were investigated for the presence of competent phlebotomine vectors. Fifty-seven municipalities whose enzootic status of CanL was unreported before 2018, were identified as endemic. The stability of 27 foci recorded over the past decade, was also confirmed. Competent phlebotomine vectors, mainly Phlebotomus perniciosus, were collected for the first time in 23 municipalities. The newly recorded endemic municipalities appear to be distributed over a west-to-east decreasing gradient: 30 in Piedmont, 21 in Lombardy, 4 in Veneto and 2 in Friuli-Venezia Giulia. As regards Veneto, it should be noted that a relatively restricted territory was investigated as several municipalities of the region had already been surveyed and detected as endemic for CanL in the past. Cold climate conditions of the easternmost region of Friuli-Venezia Giulia bordering non-endemic territories of Slovenia, are probably less favorable to L infantum transmission.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose , Animais , Doenças do Cão/epidemiologia , Cães , Insetos Vetores , Itália/epidemiologia , Leishmaniose/epidemiologia , Leishmaniose/veterinária
9.
GigaByte ; 2022: gigabyte57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824512

RESUMO

Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named "AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108". AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species.

10.
Pathogens ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34684239

RESUMO

Toxocara cati is a common roundworm of cats and wild felids and, together with T. canis, it is the main causative agent of human toxocariasis. Humans may become infected by ingestion of embryonated eggs via contaminated soil, food, or water, or by ingestion of raw or undercooked meat of paratenic hosts that are infected by Toxocara larvae. In this study, we report the detection of T. cati larvae from meat samples of ostriches and wild boars. These samples were inspected by enzymatic digestion, as part of the trichinellosis surveillance. As ostrich meat is intended for "carpaccio" preparation, a traditional Italian raw meat preparation, there is the need to make the consumption of this meat safe. For this purpose, it is recommended to freeze the meat before preparation. Our findings confirmed that T. cati larvae can contaminate muscle tissues of paratenic hosts, increasing the risk of infection due to the consumption of raw or undercooked meat.

11.
Data Brief ; 36: 107047, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997197

RESUMO

This article reports data on the occurrence and spread of three invasive mosquito species: Aedes japonicus, Aedes koreicus, and Aedes albopictus in two regions of Northeast Italy; resulting from larval and adult collections performed during the 2011-2020 period in the framework of different projects. Routine species identification was performed using morphological characters and complemented by molecular methods when required. For the years 2019 and 2020, detailed data are reported which update previous information on municipalities and sites where these species have been detected. Geo-referenced information on the presence of invasive mosquitoes is reported and demonstrated on maps. Additional data on the nature of breeding sites and the finding of native mosquito species in the same collections are also provided.

12.
Parasit Vectors ; 14(1): 164, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33761950

RESUMO

BACKGROUND: Recent climate and environmental changes have resulted in the geographical expansion of Mediterranean Leishmania infantum vectors towards northern latitudes and higher altitudes in different European countries, including Italy, where new foci of canine leishmaniasis have been observed in the northern part of the country. Northern Italy is also an endemic area for mosquito-borne diseases. During entomological surveillance for West Nile virus, mosquitoes and other hematophagous insects were collected, including Phlebotomine sand flies. In this study, we report the results of Phlebotomine sand fly identification during the entomological surveillance conducted from 2017 to 2019. METHODS: The northeastern plain of Italy was divided by a grid with a length of 15 km, and a CO2-CDC trap was placed in each geographical unit. The traps were placed ~ 15 km apart. For each sampling site, geographical coordinates were recorded. The traps were operated every two weeks, from May to November. Sand flies collected by CO2-CDC traps were identified by morphological and molecular analysis. RESULTS: From 2017 to 2019, a total of 303 sand flies belonging to the species Phlebotomus perniciosus (n = 273), Sergentomyia minuta (n = 5), P. mascittii (n = 2) and P. perfiliewi (n = 2) were collected, along with 21 unidentified specimens. The trend for P. perniciosus collected during the entomological surveillance showed two peaks, one in July and a smaller one in September. Sand flies were collected at different altitudes, from -2 m above sea level (a.s.l.) to 145 m a.s.l. No correlation was observed between altitude and sand fly abundance. CONCLUSIONS: Four Phlebotomine sand fly species are reported for the first time from the northeastern plain of Italy. Except for S. minuta, the sand fly species are competent vectors of Leishmania parasites and other arboviruses in the Mediterranean Basin. These findings demonstrate the ability of sand flies to colonize new environments previously considered unsuitable for these insects. Even though the density of the Phlebotomine sand fly population in the plain areas is consistently lower than that observed in hilly and low mountainous areas, the presence of these vectors could herald the onset of epidemic outbreaks of leishmaniasis and other arthropod-borne diseases in areas previously considered non-endemic.


Assuntos
Insetos Vetores/genética , Insetos Vetores/fisiologia , Leishmaniose/veterinária , Phlebotomus/genética , Phlebotomus/fisiologia , Altitude , Distribuição Animal , Animais , Clima , Surtos de Doenças , Cães , Feminino , Geografia , Insetos Vetores/anatomia & histologia , Insetos Vetores/parasitologia , Itália/epidemiologia , Leishmania infantum/fisiologia , Leishmaniose/epidemiologia , Leishmaniose/transmissão , Masculino , Phlebotomus/anatomia & histologia , Phlebotomus/parasitologia , Estações do Ano
13.
Parasit Vectors ; 14(1): 76, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482887

RESUMO

BACKGROUND: On 11 March 2020, the World Health Organisation (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a pandemic. As the mosquito season progressed, the understandable concern that mosquitoes could transmit the virus began to increase among the general public and public health organisations. We have investigated the vector competence of Culex pipiens and Aedes albopictus, the two most common species of vector mosquitoes in Europe, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the very unusual feeding behaviour of Ae. albopictus, we also evaluated the role of this mosquito in a potential mechanical transmission of the virus. METHODS: For the vector competence study, mosquitoes were allowed to take several infectious blood meals. The mosquitoes were then collected and analysed at 0, 3, 7 and 10 days post-feeding. For the mechanical transmission test, Ae. albopictus females were allowed to feed for a short time on a feeder containing infectious blood and then on a feeder containing virus-free blood. Both mosquitoes and blood were tested for viral presence. RESULTS: Culex pipiens and Ae. albopictus were found not be competent vectors for SARS-CoV-2, and Ae. albopictus was unable to mechanically transmit the virus. CONCLUSIONS: This is the first study to show that the most common species of vector mosquitoes in Europe do not transmit SARS-CoV-2 and that Ae. albopictus is unable to mechanically transmit the virus from a positive host to a healthy host through host-feeding.


Assuntos
Aedes/virologia , COVID-19/transmissão , Culex/virologia , Mosquitos Vetores/virologia , SARS-CoV-2/fisiologia , Animais , Sangue/virologia , Europa (Continente) , Feminino , RNA Viral/análise , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Ovinos/sangue
14.
Vet Parasitol Reg Stud Reports ; 21: 100432, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32862903

RESUMO

The Autonomous Province of Bolzano-South Tyrol (APB), located in the northernmost territory of the Italian eastern Alps, is still considered non-endemic for canine leishmaniosis (CanL) despite clinical cases being observed and a competent Leishmania infantum vector (Phlebotomus perniciosus) having been recorded since 2008. A serological survey of leishmaniosis among a randomly-selected subpopulation of registered owned dogs was carried in 2018, followed by entomological investigations performed in 2019 and driven by canine survey results. A total of 457 resident dogs from all over the APB territory were examined through IFAT for antibodies against L.infantum, of which 63 (13.8%) tested positive. Thirty-five seropositive cases (7.7%) were considered autochthonous to APB, i.e. dogs born and lived in the province, or imported dogs with no travel history in the past 5 years. Most of these animals showed an antibody titre at the threshold level of 1:40, suggesting a low degree of parasite transmission/contacts. In 2 autochthonous cases with moderately high IFAT titre, the infection was confirmed by nested-PCR in peripheral blood. Thirty-one georeferenced sites were monitored for sand flies by means of interception (sticky papers) and attraction (CDC miniature light traps) collection devices. Traps were set during summer approximately on monthly basis, and extended up to October for positive sites. Only 2 sites were found positive for a total of 317 phlebotomine specimens collected by sticky traps, which included a previously known P. perniciosus-endemic site near Bolzano town. Sergentomyia minuta was by far the most prevalent (98.1%) and the only recorded sand fly species in the most northerly Italian site ever investigated (Coldrano municipality in Venosta valley). For the first time, Leishmania serology and n-PCR positive dogs autochthonous to APB were identified, however the spread of sand flies competent for L. infantum transmission could not be demonstrated in several places where endemic seropositive cases were recorded. APB can be considered a territory of low CanL endemicity, however awareness and continuous monitoring are needed to detect changes in the epidemiological status of the zoonosis.


Assuntos
Distribuição Animal , Vetores Artrópodes/fisiologia , Doenças do Cão/epidemiologia , Leishmania infantum/isolamento & purificação , Leishmaniose Visceral/veterinária , Phlebotomus/fisiologia , Animais , Doenças do Cão/parasitologia , Cães , Feminino , Itália/epidemiologia , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Prevalência , Estudos Soroepidemiológicos
15.
Parasit Vectors ; 12(1): 120, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30909981

RESUMO

BACKGROUND: The invasive mosquito species, Aedes japonicus japonicus, was detected in northeastern Italy for the first time in 2015, at the border with Austria. After this finding, a more intensive monitoring was carried out to assess its distribution and to collect biological data. Herein, we report the results of four years (2015-2018) of activity. METHODS: The presence of Ae. j. japonicus was checked in all possible breeding sites through collections of larvae. The monitoring started from the site of the first detection at the Austrian border and then was extended in all directions. The mosquitoes were identified morphologically and molecularly. RESULTS: Aedes j. japonicus was found in 58 out of 73 municipalities monitored (79.5%). In total (2015-2018), 238 sampling sites were monitored and 90 were positive for presence of Ae. j. japonicus larvae (37.8%). The mosquito was collected mainly in artificial containers located in small villages and in rural areas. Cohabitation with other mosquito species was observed in 55.6% of the samplings. CONCLUSIONS: Aedes j. japonicus is well established in Italy and in only four years has colonised two Italian Regions, displaying rapid spreading throughout hilly and mountainous areas. Colonization towards the south seems limited by climatic conditions and the occurrence of a large population of the larval competitor, Ae. albopictus. The further spread of Ae. j. japonicus has the potential to pose new threats of zoonotic agents (i.e. Dirofilaria spp. and West Nile virus) within areas at altitudes previously considered at negligible risk in Italy.


Assuntos
Aedes , Espécies Introduzidas , Animais , Monitoramento Epidemiológico , Itália/epidemiologia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA