Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(4): e202300758, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116981

RESUMO

The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.


Assuntos
Alginatos , Antineoplásicos , Humanos , Polieletrólitos/química , Alginatos/química , Hidrogéis , Polímeros , Resveratrol
2.
Biomolecules ; 13(12)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38136581

RESUMO

Molecular dynamic modeling and various experimental techniques, including multi-angle dynamic light scattering (MADLS), streaming potential, optical waveguide light spectroscopy (OWLS), quartz crystal microbalance with dissipation (QCM), and atomic force microscopy (AFM), were applied to determine the basic physicochemical parameters of fibroblast growth factor 21 in electrolyte solutions. The protein size and shape, cross-section area, dependence of the nominal charge on pH, and isoelectric point of 5.3 were acquired. These data enabled the interpretation of the adsorption kinetics of FGF 21 on bare and macrocation-covered silica investigated by OWLS and QCM. It was confirmed that the protein molecules irreversibly adsorbed on the latter substrate, forming layers with controlled coverage up to 0.8 mg m-2, while their adsorption on bare silica was much smaller. The viability of two cell lines, CHO-K1 and L-929, on both bare and macrocation/FGF 21-covered substrates was also determined. It is postulated that the acquired results can serve as useful reference systems for designing complexes that can extend the half-life of FGF 21 in its active state.


Assuntos
Fatores de Crescimento de Fibroblastos , Simulação de Dinâmica Molecular , Adsorção , Dióxido de Silício/química , Propriedades de Superfície
3.
Sci Rep ; 13(1): 17939, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864014

RESUMO

Biomaterial science has contributed tremendously to developing nanoscale materials for delivering biologically active compounds, enhancing protein stability, and enabling its therapeutic use. This paper presents a process of formation of polyelectrolyte multilayer (PEM) prepared by sequential adsorption of positively charged polydiallyldimethylammonium chloride (PDADMAC) and negatively charged heparin sodium salt (HP), from low polyelectrolyte concentration, on a solid substrate. PEM was further applied as a platform for the adsorption of a brain-derived growth factor (BDNF), which is a protein capable of regulating neuronal cell development. The multilayers containing BDNF were thoroughly characterized by electrokinetic (streaming potential measurements, SPM) and optical (optical waveguide lightmode spectroscopy, OWLS) techniques. It was found that BDNF was significantly adsorbed onto polyelectrolyte multilayers terminated by HP under physiological conditions. We further explore the effect of established PEMs in vitro on the neuroblastoma SH-SY5Y cell line. An enzyme-linked immunosorbent assay (ELISA) confirmed that BDNF was released from multilayers, and the use of the PEMs intensified its cellular uptake. Compared to the control, PEMs with adsorbed BDNF significantly reduced cell viability and mitochondrial membrane polarization to as low as 72% and 58%, respectively. HPLC analysis showed that both PDADMAC-terminated and HP-terminated multilayers have antioxidative properties as they almost by half decreased lipid peroxidation in SH-SY5Y cells. Finally, enhanced formation of spheroid-like, 3D structures was observed by light microscopy. We offer a well-characterized PEM with antioxidant properties acting as a BDNF carrier, stabilizing BDNF and making it more accessible to cells in an inhomogeneous, dynamic, and transient in vitro environment. Described multilayers can be utilized in future biomedical applications, such as boosting the effect of treatment by selective anticancer as adjuvant therapy, and in biomedical research for future development of more precise neurodegenerative disease models, as they enhance cellular 3D structure formation.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Heparina/farmacologia , Heparina/química , Polieletrólitos/química , Fator Neurotrófico Derivado do Encéfalo , Neuroblastoma/tratamento farmacológico
4.
Int J Biol Macromol ; 247: 125701, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429346

RESUMO

Controlling cellular adhesion is a critical step in the development of biomaterials, and in cell- based biosensing assays. Usually, the adhesivity of cells is tuned by an appropriate biocompatible layer. Here, synthetic poly(diallyldimethylammonium chloride) (PDADMAC), natural chitosan, and heparin (existing in an extracellular matrix) were selected to assembly PDADMAC/heparin and chitosan/heparin films. The physicochemical properties of macroion multilayers were determined by streaming potential measurements (SPM), quartz crystal microbalance (QCM-D), and optical waveguide lightmode spectroscopy (OWLS). The topography of the wet films was imaged using atomic force microscopy (AFM). The adhesion of preosteoblastic cell line MC3T3-E1 on those well-characterized polysaccharide-based multilayers was evaluated using a resonant waveguide grating (RWG) based optical biosensor and digital holographic microscopy. The latter method was engaged to investigate long-term cellular behavior on the fabricated multilayers. (PDADMAC/heparin) films were proved to be the most effective in inducing cellular adhesion. The cell attachment to chitosan/heparin-based multilayers was negligible. It was found that efficient adhesion of the cells occurs onto homogeneous and rigid multilayers (PDADMAC/heparin), whereas the macroion films forming "sponge-like" structures (chitosan/heparin) are less effective, and could be employed when reduced adhesion is needed. Polysaccharide-based multilayers can be considered versatile systems for medical applications. One can postulate that the presented results are relevant not only for modeling studies but also for applied research.


Assuntos
Técnicas Biossensoriais , Quitosana , Quitosana/química , Polissacarídeos/farmacologia , Heparina/farmacologia , Heparina/química , Adesão Celular , Propriedades de Superfície
5.
Biomolecules ; 13(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189357

RESUMO

Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Cicatrização , Humanos
6.
Carbohydr Polym ; 292: 119676, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725171

RESUMO

Molecular dynamics modeling was applied to predict chitosan molecule conformations, the contour length, the gyration radius, the effective cross-section and the density in electrolyte solutions. Using various experimental techniques the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility of molecules were determined. This allowed to calculate the zeta potential, the electrokinetic charge and the effective ionization degree of the chitosan molecule as a function of pH and the temperature. The chitosan solution density and zero shear dynamic viscosity were also measured, which enabled to determine the intrinsic viscosity increment. The experimental results were quantitatively interpreted in terms of the slender body hydrodynamics exploiting molecule characteristics derived from the modeling. It is also confirmed that this approach can be successfully used for a proper interpretation of previous literature data obtained under various physicochemical conditions.


Assuntos
Quitosana , Hidrodinâmica , Eletrólitos/química , Simulação de Dinâmica Molecular , Soluções , Viscosidade
7.
J Phys Chem B ; 125(28): 7797-7808, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34253019

RESUMO

The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Carragenina , Cinética , Propriedades de Superfície
8.
J Colloid Interface Sci ; 530: 444-458, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990780

RESUMO

This work reports the development of different types of alginate hydrogel microparticles designed specifically for the esculin (ESC) payload. Negatively charged alginate (ALG) microspheres were prepared by the ionotropic gelation technique, and an oppositely charged polyelectrolyte (PE) shell as a compatible polycation (chitosan (CHIT) or gelatin (GEL)) or a synthetic PEs (poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonate) (PSS)) were adsorbed using electrostatic complexation. Thorough characterization of microparticles was performed with advanced microscopic techniques (scanning electron, fluorescence and confocal), followed by stability studies, ESC encapsulation efficacy determination and in vitro release kinetics measurements. We provide an in-depth investigation of the relationships between the properties (thickness, viscosity, areal mass, zeta potential) of the outer shell and the retaining and release abilities of the fabricated microcarriers, using quartz crystal microbalance with dissipation monitoring technique (QCM-D), spectroscopic ellipsometry and streaming potential measurements, combined in a new approach that was not attempted before for micrometric particles. The PAH-PSS and GEL coatings provided sufficient protection against ESC release under simulated gastric conditions that followed a two-stage Corrigan-Gallagher model with a marginal release rate in the first (lag) stage. This seems to be an interesting outcome, since it is rather peculiar for a low-molecular weight hydrophilic compound encapsulated in a highly porous microhydrogel to be released in such a manner.


Assuntos
Alginatos/química , Anti-Inflamatórios/administração & dosagem , Preparações de Ação Retardada/química , Esculina/administração & dosagem , Hidrogéis/química , Anti-Inflamatórios/química , Cápsulas , Quitosana/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Esculina/química , Gelatina/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Poliaminas/química , Polieletrólitos , Polímeros/química , Eletricidade Estática , Ácidos Sulfônicos/química
9.
Adv Colloid Interface Sci ; 250: 95-131, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29055493

RESUMO

Recent studies on macroion adsorption at solid/liquid interfaces evaluated by electrokinetic and optical methods are reviewed. In the first section a description of electrokinetic phenomena at a solid surface is briefly outlined. Various methods for determining both static and dynamic properties of the electrical double layer, such as the appropriate location of the slip plane, are presented. Theoretical approaches are discussed concerning quantitative interpretation of streaming potential/current measurements of homogeneous macroscopic interfaces. Experimental results are presented, involving electrokinetic characteristics of bare surfaces, such as mica, silicon, glass etc. obtained from various types of electrokinetic cells. The surface conductivity effect on zeta potential is underlined. In the next section, various theoretical approaches, proposed to determine a distribution of electrostatic potential and flow distribution within macroion layers, are presented. Accordingly, the influence of the uniform as well as non-uniform distribution of charges within macroion layer, the dissociation degree, and the surface conductance on electrokinetic parameters are discussed. The principles, the advantages and limits of optical techniques as well as AFM are briefly outlined in Section 4. The last section is devoted to the discussion of experimental data obtained by streaming potential/current measurements and optical methods, such as reflectometry, ellipsometry, surface plasmon resonance (SPR), optical waveguide lightmode spectroscopy (OWLS), colloid enhancement, and fluorescence technique, for mono- and multilayers of macroions. Results of polycations (PEI, PAMAM dendrimers, PAH, PDADMAC) and polyanions (PAA, PSS) adsorption on mica, silicon, gold, and PTFE are quantitatively interpreted in terms of theoretical approaches postulating the three dimensional charge distribution or the random sequential adsorption model (RSA). Macroion bilayer formation, experimentally examined by streaming current measurements, and theoretically interpreted in terms of the comprehensive formalism is also reviewed. The utility of electrokinetic measurements, combined with optical methods, for a precise, in situ characteristics of macroion mono- and multilayer formation at solid/liquid interfaces is pointed out.

10.
J Colloid Interface Sci ; 485: 232-241, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27665076

RESUMO

The deposition of poly(amido amine) dendrimers on mica at various pHs was studied by the atomic force microscopy (AFM) and in situ streaming potential measurements. Bulk characteristics of dendrimers were acquired by using the dynamic light scattering (DLS) and the laser Doppler velocimetry (LDV). The hydrodynamic radius derived from DLS measurements was 5.2nm for the ionic strength of 10-2M and pH range 4-10. The electrophoretic mobility, the zeta potential and the number of electrokinetic charges per molecule were derived as a function of pH from the LDV measurements. It was revealed that the dendrimers are positively charged for pH up to 10. This promoted their deposition on negatively charged mica substrate whose kinetics was quantitatively evaluated by direct AFM imaging and streaming potential measurements interpreted in terms of the electrokinetic model. The desorption kinetics of dendrimers under flowing conditions from monolayers of various coverage was also studied. It was revealed that dendrimer deposition was partially reversible for pH above 5.8. The acid-base properties of the dendrimer monolayers deposited on mica were characterized.

11.
J Colloid Interface Sci ; 450: 82-90, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801136

RESUMO

Monolayers of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) on mica were thoroughly characterized using the streaming potential and the colloid deposition methods. Initially, the stability of the monolayers was determined by performing desorption experiments carried out under diffusion-controlled regime. It was shown that the desorption of the polyelectrolyte at the ionic strength range 0.01-0.15 M is negligible over the time of 20 h. The structure of PDADMAC monolayers and orientation of molecules were evaluated using the colloid deposition measurements involving negatively charged polystyrene latex microspheres, 820 nm in diameter. The functional relationships between the polyelectrolyte coverage and latex coverage deposited within 20 h were acquired by direct optical microscope. In this way the influence of ionic strength varied in the range 0.15-0.01 M on the molecule orientation in monolayers was determined. It was shown that for ionic strength of 0.15 M nearly one to one mapping of polyelectrolyte chains by colloid particles can be achieved for PDADMAC coverage below 0.1%. In this way, because of a considerable surface area ratio between the macromolecule and the colloid particle, an enhancement factor of 10(3) can be attained. This behavior was quantitatively interpreted in terms of the random site adsorption model whereas the classical mean-field theory proved inadequate. On the other hand, for lower ionic strength, it was confirmed that an irreversible immobilization of latex particles can only occur at a few closely spaced PDADMAC chains. It was shown that these experimental results were consistent with the side-on adsorption mechanisms of PDADMAC at mica for the above ionic strength.

12.
J Colloid Interface Sci ; 435: 182-90, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25265546

RESUMO

Conformations of poly(diallyldimethylammonium chloride), PDADMAC, molecules in electrolyte solutions were experimentally evaluated by dynamic light scattering (DLS), micro-electrophoretic and viscosity measurements. The role of ionic strength varied within 10(-4) and 2M was systematically studied. The diffusion coefficient of the polymer molecules was equal to 1.3×10(-7)cm(2)s(-1) for the ionic strength range 5×10(-4) to 10(-2)M decreasing slightly for higher ionic strength. This corresponds to the hydrodynamic diameter of 38.5nm. Using the diffusion coefficient and the electrophoretic mobility data, the electrokinetic charge on PDADMAC molecules was calculated as a function of ionic strength. It was positive and varied between 84 and 51 elementary charges. This gives the effective ionization degree of the macromolecule equal to 13% and 8% for ionic strength of 5×10(-4) and 0.15M, respectively. Additional information about macromolecule conformation was derived from the viscosity measurements of dilute PDADMAC solutions. The intrinsic viscosity derived from these measurements decreased abruptly with ionic strength from 3400 for 10(-4)M to 100 for 2M, NaCl solutions. By extrapolating the hydrodynamic diameter and intrinsic viscosity data to zero ionic strength the polyelectrolyte molecule contour length of 240nm and the backbone diameter of 0.85nm were predicted. On the other hand, the decrease in the intrinsic viscosity for higher ionic strength was attributed to changes in macromolecule conformations to more collapsed ones. The experimental results were interpreted by molecular dynamics modeling of PDADMAC chain conformations in electrolyte solutions where the ionic strength effect and the effective ionization degree were considered. A quantitative agreement was attained for lower ionic strength range proving that the combined DLS and viscosity measurements furnish reliable information about macromolecule conformations in electrolyte solution.

13.
J Colloid Interface Sci ; 428: 170-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910050

RESUMO

Kinetics of adsorption and monolayer stability of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) were determined. Initially, the bulk characteristics of the polyelectrolyte were acquired using the DLS and microelectrophoretic measurements. These comprised the diffusion coefficient and electrophoretic mobility determined as a function of ionic strength at pH 5.8. From these measurements, the hydrodynamic diameter, zeta potential and the amounts of electrokinetic charge per molecule were calculated. Subsequently, the kinetics of PDADMAC adsorption was evaluated under in situ conditions using the quartz crystal microbalance with dissipation (QCM-D) and streaming potential measurements. The latter allowed one to derive the calibration dependencies of the zeta potential on the polyelectrolyte coverage for various ionic strength successfully interpreted in terms of the 3-dimensional (3D) electrokinetic model. Using these data, the PDADMAC desorption kinetics were quantitatively analyzed. In this way, the desorption constants, the equilibrium adsorption constants, and the binding energies of PDADMAC were determined. The energy varied between -20.5 and -19.7 kT, for ionic strength of 10(-3) and 0.15M, respectively. This agree with the proposed model of discrete electrostatic interactions among ion pairs present at the polyelectrolyte chain and the substrate surface. The mean-field electrostatic interactions approach proved inadequate.

14.
J Colloid Interface Sci ; 364(1): 39-48, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21889157

RESUMO

A stable silver nanoparticle suspension was synthesized via the reduction of silver nitrate using sodium borohydride and sodium citrate. The particle's shape and size distribution were measured by various methods. The electrophoretic mobility measurements revealed that the zeta potential of particles was highly negative, increasing slightly with the ionic strength, from -52 mV for I=10(-5) M to -35 mV for I=3×10(-2) M (for pH=5.5). The zeta potential of mica modified by the adsorption of cationic polyelectrolytes: PEI and PAH was also determined using the streaming potential measurements. The modified mica sheets were used as substrates for particle monolayers formed via colloid self assembly. The kinetics of this process, proceeding under diffusion-controlled transport conditions, was quantitatively evaluated by a direct enumeration of particles using the AFM and SEM techniques. Both the kinetics of particle deposition and the maximum surface concentration were determined. From the slope of the initial deposition rates, the equivalent diameter of particles was determined to be 16 nm, in agreement with previous measurements. Based on this finding, an efficient method of determining particle size in suspension was proposed. It was also demonstrated that for higher ionic strengths, the maximum coverage of particle monolayers on PAH modified mica exceeded 0.39. The kinetic data were quantitatively interpreted in terms of the random sequential adsorption (RSA) model using the effective hard particle concept.


Assuntos
Membranas Artificiais , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Adsorção , Coloides/síntese química , Coloides/química , Eletrólitos/química , Cinética , Tamanho da Partícula , Propriedades de Superfície
15.
J Colloid Interface Sci ; 345(2): 187-93, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20185145

RESUMO

Monodisperse silver particles were synthesized according to the method of Creighton et al. by reduction of AgNO(3) solutions with NaBH(4) in the presence of polyvinyl alcohol as the stabilizing agent. Bulk characteristics of silver nanoparticles in aqueous solutions were carried out by measuring their extinction spectrum, fluorescence, diffusion coefficients using the PCS method and the electrophoretic mobilities. The average hydrodynamic diameter of PVA covered silver particles was 44 nm, being fairly independent of ionic strength and pH in the range of 3-9. It was also shown that the hydrodynamic radius did not change within prolonged storage of suspensions (up to 75 days), indicating that the sols were quite stable. A similar value of 45±8 nm was determined from SEM measurements. The electrophoretic mobility measurements showed that the zeta potential of silver nanoparticles was insensitive to pH and decreased with the ionic strength, attaining -45 mV for I=10(-5) M and -25 mV for I=10(-2) M. Additionally, the kinetics of silver particle deposition on mica modified by adsorption of a saturated layer of poly(ethylene imine) (PEI) was studied. Surface concentration was determined directly by counting the number of particles over various surface areas using the atomic force microscopy working in the semicontact mode. The maximum surface concentration for I=10(-3)M was 102 µm(-2), which corresponds to the coverage degree of 16%. The kinetic run and the maximum coverage value was in a good agreement with theoretical predictions stemming from the random sequential adsorption (RSA) model. This kinetic run allowed one to determine the size of Ag core, which was 20 nm and the thickness of the PVA layer, equal to 12 nm.

16.
J Colloid Interface Sci ; 313(1): 86-96, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17521663

RESUMO

Deposition kinetics of polystyrene latex (averaged particle size of 0.66 microm) on mica covered by poly(ethylene imine) (PEI), a cationic polyelectrolyte having an average molecular mass of 75,000 g mol(-1), was studied using the impinging-jet method. The hydrodynamic radius of PEI, determined by PCS measurements, was 5.3 nm. The electrophoretic mobility of PEI was measured as a function of pH for ionic strengths of 10(-3) and 10 (-2) M, which made it possible one to determine the amount of electrokinetic charge of the molecule and its zeta potential. Formation of the polyelectrolyte layer on mica was followed by measuring the streaming potential in the parallel-plate channel. From these measurements, the dependence of the apparent zeta potential of mica on the surface coverage of PEI was determined. The amount of adsorbed PEI on mica was calculated from the convective diffusion theory. These results were quantitatively interpreted in terms of the theoretical model postulating a particle-like adsorption mechanism for PEI with not too significant shape deformation upon adsorption. On the other hand, the Gouy-Chapman model postulating the adsorption in the form of flat disks was proved inappropriate. After the surface was fully characterized, particle deposition experiments were carried out with the aim of finding the correlation between the polymer coverage and the initial rate of latex particle deposition. In the range of small polyelectrolyte coverage, a monotonic relation between the polymer coverage and the initial deposition rate of particles, as well as the jamming coverage, was found. For Theta(PEI)>0.25, the initial particle deposition rate attained the value predicted from the convective diffusion theory for homogeneous surfaces. These results were interpreted theoretically by postulating that an effective immobilization of colloid particles occurred on local polyelectrolyte assemblages containing between two and three PEI molecules.

17.
Adv Colloid Interface Sci ; 118(1-3): 25-42, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-15961056

RESUMO

Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda < 4 the site multiplicity effect plays a dominant role, affecting significantly the structure of particle monolayers and the jamming coverage. Experimental results validating main aspects of these theoretical predictions also have been reviewed. These results were derived by using monodisperse latex particles adsorbing on substrates produced by covering uniform surface by adsorption sites of a desired size, coverage and surface charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was evaluated by direct particle counting using the optical and electron microscopy. Adsorption kinetics was quantitatively interpreted in terms of numerical solutions of the governing diffusion equation with the non-linear boundary condition derived from Monte-Carlo simulations. It was proven that for site coverage as low as a few percent the initial flux at heterogeneous surfaces attained the maximum value pertinent to homogeneous surfaces. It also was demonstrated that the structure of larger particle monolayers, characterized in terms of the pair correlation function, showed much more short-range ordering than predicted for homogeneous surface monolayers at the same coverage. The last part of this review was devoted to detection of polyelectrolyte multilayers on various substrates via particle deposition experiments.


Assuntos
Coloides/química , Adsorção , Coloides/farmacocinética , Simulação por Computador , Modelos Teóricos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA