Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(42): 28911-28924, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855156

RESUMO

Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li+, Na+ or Rb+ ions. Here, the nature of these species has a clear influence on the short-range spatial organisation of the ions at the interface and thus on the colloidal stability of the dispersions, governing both the NP/NP and NP/IL interactions, which are both evaluated here. The overall NP/NP interaction is either attractive or repulsive. It is characterised by determining, thanks to the SAS techniques, the second virial coefficient A2, which is found to be independent of temperature. The NP/IL interaction is featured by the dynamical effective charge ξeff0 of the NPs and by their entropy of transfer SNP (or equivalently their heat of transport ) determined here thanks to thermoelectric and thermodiffusive measurements. For repulsive systems, an activated process rules the temperature dependence of these two latter quantities.

2.
Rev Sci Instrum ; 93(7): 075102, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922335

RESUMO

Battery recycling is currently becoming a crucial issue. One possible treatment path involves the use of molten salts. A mechanistic understanding of the underlying processes requires being able to analyze in situ speciation in molten salts at various temperatures. This can be advantageously achieved using x-ray absorption spectroscopy, the use of Quick-EXAFS facilities being particularly appropriate. Consequently, this paper presents the design and development of a new setup allowing carrying out Quick-EXAFS experiments in oxidizing molten salts at high temperatures. We describe the different components of a cell and the performance of the heating device. We illustrate the capabilities of the setup by analyzing the temperature evolution of Co speciation upon dissolution of LiCoO2, a typical battery electrode material, in molten carbonates, hydroxides, and hydrogenosulphates.

3.
Water Res ; 164: 114960, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408758

RESUMO

Complexing anions such as phosphate or silicate play an ambivalent role in the performance of hydrolyzing metal coagulants: On one hand, they significantly interfere with the hydrolytic pathway of conventional iron or aluminum coagulants, the associated destabilization mechanism remaining rather elusive; on the other hand, they have been shown to be key ingredients in the formulation of innovative coagulant solutions exhibiting improved removal efficiency, their action mechanism at the molecular scale being presently poorly understood. In this paper, we explore the effect of small additions of phosphate ligand on the chemical coagulation of silica nanoparticles with ferric chloride. Transmission Electron Microscopy-Energy Dispersed X-ray Spectroscopy (TEM-EDXS) combined with Extended X-ray absorption Fine Structure Spectroscopy (EXAFS) at the Fe K-edge are used to provide an insight into the nature of coagulant species, whereas jar-tests, laser diffraction, Small Angle X-ray Scattering (SAXS), and electrophoretic mobility, are used to investigate the aggregation dynamics of silica particles in the presence of phosphate ligand. We show that, in spite of a slight increase in the consumption of iron coagulant, the addition of phosphate significantly improves the formation of silica aggregates provided that the elemental Fe/P ratio remains above 7. Such effects originate from both a large increase in the overall number of coagulant species, the binding of a phosphate ligand terminating the growth of polymeric chains of edge-sharing Fe octahedra, and a change in the nature of the coagulant species that evolves with the Fe/P ratio, small polycations built-up from Fe-oligomers linked by phosphate tetrahedra being eventually formed. Those non-equilibrium nanosize Fe-P coagulant species assemble the silica nanoparticles to form hetero-aggregates whose structure is consistent with a Diffusion-Limited Cluster Aggregation mechanism.


Assuntos
Compostos Férricos , Fosfatos , Cloretos , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Vet Parasitol ; 256: 16-23, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29887024

RESUMO

Breeding sheep for enhanced resistance to gastrointestinal parasites is a promising strategy to limit the use of anthelmintics due to the now widespread resistance of parasites to these molecules. This paper reports the genetic parameters estimated for parasite resistance and resilience traits in the Blond-faced Manech dairy sheep breed and the putative impacts of the selection for resistance to gastrointestinal nematodes (GIN) on farms. Two datasets were used. First, the rams of the selection scheme were artificially infected twice with L3 Haemonchus contortus larvae. Faecal egg counts (FEC) and packed cell volume (PCV) loss were measured 30 days after each infection. Secondly, the FEC, PCV and body condition score (BCS) (1-6 measures per ewe) of naturally infected ewes on farms were measured in the spring, summer and autumn over a two-year period. Genetic parameters were estimated for each dataset independently but also globally based on the pedigree connections between the two datasets. For the experimentally infected sires, the FEC following the second infection was moderately heritable (heritability: 0.35) and strongly correlated with FEC after the first infection (genetic correlation: 0.92). For the naturally infected ewes, FEC was also heritable (0.18). Using the two datasets together, a genetic correlation of 0.56-0.71 was estimated between the FEC values of the experimentally infected rams and naturally infected ewes. Consequently, the genetic variability of parasite resistance is similar whatever the physiological status (males or milking/pregnant ewes) and the infection conditions (experimental infection with one parasite or natural infection with several parasites). In practice, when the sire population is divided into two groups based on their genetic value, the FEC of the ewes born to the 50% most resistant sires is half that of the ewes born to the 50% most susceptible sires. Our study shows the feasibility and efficiency of genetic selection for parasitism resistance based on the sires' FEC records to improve parasite resistance in naturally grazing ewes. For breed improvement, and to increase the selection pressure on parasite resistance, it seems more appropriate to measure FEC values on rams after experimental infection rather than on ewes in natural infection conditions because this limits the number and standardizes the conditions of FEC measurements.


Assuntos
Infecções por Nematoides/veterinária , Doenças dos Ovinos/imunologia , Animais , Resistência à Doença , Feminino , Variação Genética , Enteropatias Parasitárias/veterinária , Masculino , Nematoides/imunologia , Infecções por Nematoides/genética , Infecções por Nematoides/imunologia , Ovinos , Doenças dos Ovinos/genética
5.
Ultrason Sonochem ; 21(3): 1018-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24291307

RESUMO

A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.


Assuntos
Suspensões/química , Ultrafiltração/métodos , Ultrassom/métodos , Membranas Artificiais , Polímeros/química , Silicatos/química , Sulfonas/química
6.
J Appl Microbiol ; 116(2): 325-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24118978

RESUMO

AIMS: This study aimed to study biotic iron dissolution using a new hybrid material constituted of well-dispersed mineral colloids in a silica gel matrix. This permitted to prevent adsorption of colloidal mineral particles on bacteria. Hybrid silica gel (HSG) permitted to study bioweathering mechanisms by diffusing molecules. METHODS AND RESULTS: Hybrid silica gel was synthesized through a classical sol-gel procedure in which mineral colloidal particles (NAu-2) were embedded in a porous silica matrix. Rahnella aquatilis RA1, isolated from a wheat rhizosphere was chosen for its ability to dissolve minerals by producing various organic acids and siderophores. Pyruvic, acetic and lactic acids were the major organic acids produced by R. aquatilis RA1 followed by oxalic and citric acids at the end of incubation. Comparison of abiotic and biotic experiments revealed a high efficiency of R. aquatilis RA1 for iron dissolution suggesting an optimized action of different ligands that solubilized or mobilized iron. CONCLUSIONS: Hybrid silica gel allowed focusing on the colloidal mineral weathering by metabolites diffusion without mineral adsorption on bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Hybrid silica gels are new and efficient tools to study colloidal mineral bioweathering. Adjusting HSG porosity and hydrophobicity should permit to precise the influence of limiting diffusion of siderophores or aliphatic organic acids on mineral weathering.


Assuntos
Coloides/metabolismo , Ferro/metabolismo , Rahnella/metabolismo , Sílica Gel/metabolismo , Adsorção , Meios de Cultura , Difusão , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Minerais/metabolismo , Rizosfera , Sideróforos , Microbiologia do Solo , Triticum/microbiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-23944454

RESUMO

In this paper, we present a model aimed at predicting the rheological response of a 3D dry granular system to nonstationary mechanical solicitations, subjected or not to vibrations. This model is based on a phenomenological two-state approach related to the inherent bimodal behavior of chain forces in granular packing. It is set up from a kinetic equation describing the dynamics of the contact network. To allow experimental assessment, the kinetic equation is transformed into a differential constitutive equation, relating stress to strain, from which rheological properties can be derived. Its integration allows predicting and describing several rheological behaviors, in stationary and nonstationary conditions, including viscous (Newtonian) and frictional (Coulombian) regimes, as well as elastic linear (Hookean and Maxwellian) and nonlinear behaviors. Despite its simplicity, since it involves only three independent parameters, the model is in very close agreement with experiments. Moreover, within experimental errors, the values of these parameters are independent of the type of test used to determine them, evidence of the self-consistency of the model.

8.
Langmuir ; 29(17): 5315-24, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23544905

RESUMO

In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).


Assuntos
Coloides/química , Suspensões/química , Tamanho da Partícula , Reologia , Propriedades de Superfície , Viscosidade
9.
Phys Rev Lett ; 108(25): 254501, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004605

RESUMO

In this Letter, we propose an original and novel experimental method to characterize both the onset and morphology of Taylor-Couette instability occurring in a non-Newtonian cylindrical Couette flow. Using synchrotron-based rheological small angle x-ray scattering experiments, we jointly investigate the shear-thinning behavior of natural swelling clays suspensions and the associated anisotropy developing in such media. Combined with a linear stability analysis for power law fluids, a destabilizing effect is shown both numerically and experimentally and the vortices morphology is found to be dependent on the fluid index. Still, the strong destabilizing effect and large vortex size can not be assigned to shear-thinning only, which clearly evidences the impact of medium anisotropy on Taylor-Couette instability.

10.
Phys Rev Lett ; 108(19): 198301, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003094

RESUMO

We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.

11.
J Phys Chem A ; 116(10): 2379-87, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22324768

RESUMO

Collective excitations of water confined in the interlayer space of swelling clay minerals were studied by means of inelastic neutron scattering. The effect of bidimensional confinement on the dynamics of the interlayer water was investigated by using a synthetic Na-saponite sample with a general formula of Si(7.3)Al(0.7)Mg(6)O(20)(OH)(4)Na(0.7) in a bilayer hydration state. Experimental results reveal two inelastic signals, different from those described for bulk water with a clear anisotropy on the low-energy excitation of the collective dynamics of interlayer water, this difference being stronger in the perpendicular direction. Results obtained for the parallel direction follow the same trend as bulk water, and the effect of the confinement is mainly manifested from the fact that clay interlayer water is more structured than bulk water. Data obtained in the perpendicular direction display a nondispersive behavior below a cutoff wavenumber value, Q(c), indicating a nonpropagative excitation below that value. Molecular dynamics simulations results agree qualitatively with the experimental results.

12.
J Colloid Interface Sci ; 363(1): 334-47, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21820126

RESUMO

The aim of the present paper is to clarify previous results showing that selectivity coefficients determined for the exchange of Na(+) for Ca(2+) in montmorillonite were dependent on the solid/solution ratio. The organization of montmorillonite suspensions upon Na(+)/Ca(II) exchange was analyzed by combining optical microscopy, small-angle X-ray scattering and X-ray diffraction. All samples displayed flocculated characteristics, eliminating the possibility of contrasting accessibility of sorption sites with the solid/solution ratio. Modeling of experimental X-ray diffraction patterns was used to quantify the relative proportions of interlayer Ca(2+) and Na(+) cations along the exchange isotherm. The results further confirmed the influence of the solid/solution ratio on the degree of interlayer Ca(II)-for-Na(+) exchange, and specific selectivity coefficients for interlayer sites were determined. The effect of the solid/solution ratio was finally interpreted by the resulting local changes in the solution chemistry. We demonstrated that by accounting for the Donnan effect, the different data can be interpreted using a single selectivity coefficient. The obtained Kc constant was successfully applied to interpret existing hydrogeochemical data on a natural aquitard. This most likely represents a more constrained and valid approach for the modeling of reactive element transport in natural media than does the poorly defined Kd parameter.

13.
J Phys Chem B ; 115(24): 7751-65, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21630651

RESUMO

We study the electric-field-induced birefringence and orientational order in the isotropic phase of aqueous suspensions of exfoliated natural beidellite clay particles, thin (L = 0.65 nm) flat charged sheets with high aspect ratio, D/L ≈ 300. Our electric birefringence experiment is optimized for aqueous suspensions of colloidal particles, with a high frequency a.c. electric field, ν ≈ 1 MHz, applied by two external electrodes to a thin flat sample, sealed in an optical capillary. In isotropic and biphasic samples, we observed strong field-induced birefringence Δn(E), saturating at moderate E(sat) field to a plateau Δn(sat) proportional to the volume fraction ϕ. The field-induced order parameter S(E) is negative and saturates to S(sat) = -0.5 above E(sat). This corresponds to a perfect "anti-nematic" order, i.e. the normals of the beidellite particles are perpendicular to the field, without any preferred azimuthal direction. The measured specific excess polarizability ΔA(sp) is among the highest data reported for other strongly anisometric dielectric and metal particles. We explain the high ΔA(sp) value with the strong induced polarization of the electric double layer of counterions at the charged particle/electrolyte interface. The estimated equivalent conductivity of the beidellite particle K(eq) = 2 K(σ)/L is several orders of magnitude larger than the bulk conductivity of the electrolyte K(e), resulting in a metal-like behavior of the beidellite disks under field. In the isotropic regions of biphasic nematic/isotropic samples, the excess polarizability is further enhanced by an order of magnitude, indicating collective reorientation of the particles. We propose that this enhancement might be due to pretransitional fluctuations of the spontaneous nematic order S(N) of the colloidal suspension and/or formation of chains of particles, with antinematic order of the beidellite disks in the chains.

14.
J Phys Condens Matter ; 23(19): 194112, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21525562

RESUMO

Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.


Assuntos
Silicatos de Alumínio/química , Bentonita/química , Suspensões/química , Difração de Raios X/métodos , Argila , Simulação por Computador , Hidrodinâmica , Tamanho da Partícula , Reologia , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Viscosidade , Água/química
15.
J Phys Chem B ; 113(48): 15858-69, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19904906

RESUMO

After size-selection and osmotic pressure measurements at fixed ionic strength, the behavior of aqueous colloidal suspensions of anisotropic disklike beidellite clay particles has been investigated by combining optical observations under polarized light, rheological, and small angle X-ray scattering (SAXS) experiments. The obtained phase diagrams (volume fraction/ionic strength) reveal, for ionic strength below 10(-3) M/L, a first-order isotropic/nematic (I/N) phase transition before gel formation at low volume fractions, typically around 0.5%. This I/N transition line displays a positive slope for increasing ionic strength and shifts toward lower volume fraction with increasing particle size, confirming that the system is controlled by repulsive interactions. The swelling laws, derived from the interparticle distances obtained by SAXS, display a transition from isotropic swelling at low volume fractions to lamellar swelling at higher volume fractions. The liquid-crystal properties have then been investigated in detail. Highly aligned nematic samples can be obtained in three different ways, by applying a magnetic field, an ac electric field, and by spontaneous homeotropic anchoring on surfaces. The birefringence of the fluid nematic phase is negative with typical values around 5 x 10(-4) at a volume fraction of about 0.6%. High nematic order parameters have been obtained as expected for well-aligned samples. The nematic director is aligned parallel to the magnetic field and perpendicular to the electric field.

16.
J Colloid Interface Sci ; 336(2): 599-606, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19464022

RESUMO

This work aims at a better understanding of the interaction between a polycationic quaternary amine polymer (F25) and three different clay minerals: montmorillonite, illite, and kaolinite. For this, adsorption isotherms of F25 on the clay surfaces were measured together with the evolution of the CEC along the isotherm, which revealed that cation exchange plays an important role in the adsorption process. These first results were confirmed by XRD measurements on dried powders that are evidence in the case of montmorillonite of the presence of polymer in the interlayer spaces. In addition, the evolution of the short range structure of clay minerals suspensions on polymer adsorption was followed by WAXS experiments. Polymer intercalation was observed while the structure of the resulting stacking appeared to change slightly along the polymer adsorption isotherm. Diffuse reflectance infrared measurements revealed that significant conformational changes occur on polymer adsorption onto montmorillonite surfaces. Furthermore, adsorption above the CEC is observed which involves a charge reversal of clay mineral surfaces, the zero charge being reached for an adsorbed amount corresponding to the CEC. Finally, flocculation was discussed compared to adsorption amounts and zeta potential measurements, confirming that optimum flocculation concentration is reached for noncharged particles.

17.
Water Res ; 42(8-9): 2111-23, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18155268

RESUMO

Electrophoretic mobility, pyrene fluorescence, surface tension measurements, transmission electron microscopy on resin-embedded samples, and X-ray microscopy (XRM) were combined to characterize the aggregates formed from humic colloids and hydrolyzed-Fe species under various conditions of pH and mixing. We show that, at low coagulant concentration, the anionic humic network is reorganized upon association with cationic coagulant species to yield more compact structures. In particular, spheroids about 80nm in size are evidenced by XRM at pH 6 and 8 just below the optimal coagulant concentration. Such reorganization of humic colloids does not yield surface-active species, and maintains negative functional groups on the outside of humic/hydrolyzed-Fe complex. We also observe that the humic network remains unaffected by the association with coagulant species up to the restabilization concentration. Upon increasing the coagulant concentration, restructuration becomes limited: indeed, the aggregation of humic acid with hydrolyzed-Fe species can be ascribed to a competition between humic network reconformation rate and collision rate of destabilized colloids. A decrease in stirring favors the shrinkage of humic/hydrolyzed-Fe complexes, which then yields a lower sediment volume. Elemental analyses also reveal that the iron coagulant species are poorly hydrolyzed in the destabilization range. This suggests that destabilization mechanisms such as sweep flocculation or adsorption onto a hydroxyde precipitate are not relevant to our case. A neutralization/complexation destabilization mechanism accompanied by a restructuration of flexible humic network is then proposed to occur in the range of pHs investigated.


Assuntos
Compostos Férricos/química , Substâncias Húmicas , Abastecimento de Água , Cloretos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Conformação Molecular
18.
Langmuir ; 21(26): 12283-9, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16343004

RESUMO

Textural and energetic proprieties of kaolinite were studied by low-pressure argon adsorption at 77 K. The heterogeneity of four kaolinites (two low-defect and two high-defect samples) modified on their surface by cation exchange with Li+, Na+, or K+ was studied by DIS analysis of the derivative argon adsorption isotherms. The comparison between the derivative adsorption isotherms shows that the nature of the surface cation influences the adsorption phenomena on edge and basal faces. In the case of basal faces, two adsorption domains are observed: for the first one, argon adsorption is slightly sensitive to the nature of the surface cation; for the second one, argon adsorption energy depends on the nature of surface cation suggesting their presence on theoretically uncharged basal faces. This study also shows that the shape of elementary particles, as derived from basal and edge surface areas, changes with the nature of cation. This anomalous result is due to the decrease of edge surface area with increasing the size of the cation. This surface cation dependence can be accounted for the area occupied by the edge surface cations in the first argon monolayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA