Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2744: 119-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683314

RESUMO

Chelex-based DNA extractions are well suited for student DNA barcoding research because they are simple, safe, and inexpensive and can be performed without specialized laboratory equipment, allowing them to be performed in classrooms or at home. Extracted DNA is stable in Chelex solution for at least a week at ambient temperature, allowing collection of DNA samples from remote students. These extractions provide quality DNA for many taxa and are optimal for barcoding invertebrates, especially in combination with novel cytochrome c oxidase I (COI) primer cocktails and PCR cycling conditions.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Reação em Cadeia da Polimerase , Código de Barras de DNA Taxonômico/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Reação em Cadeia da Polimerase/métodos , Invertebrados/genética , Invertebrados/classificação , DNA/genética , DNA/isolamento & purificação
2.
Methods Mol Biol ; 2744: 517-523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683339

RESUMO

This rapid, equipment-free DNA isolation procedure using chromatography paper is a simple method that can be performed in less than 30 min and requires no wet lab experience. With minimal expense, it offers an affordable alternative for anyone wanting to explore biodiversity. It also provides an excellent option for use in classrooms or other activities that are time limited. The method works best for plants or lichens, producing stable DNA on Whatman® chromatography paper at room temperature, which can be eluted as needed.


Assuntos
Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , DNA/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Plantas/genética , Cromatografia/métodos , Líquens/genética
3.
Front Plant Sci ; 11: 289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296450

RESUMO

MaizeCODE is a project aimed at identifying and analyzing functional elements in the maize genome. In its initial phase, MaizeCODE assayed up to five tissues from four maize strains (B73, NC350, W22, TIL11) by RNA-Seq, Chip-Seq, RAMPAGE, and small RNA sequencing. To facilitate reproducible science and provide both human and machine access to the MaizeCODE data, we enhanced SciApps, a cloud-based portal, for analysis and distribution of both raw data and analysis results. Based on the SciApps workflow platform, we generated new components to support the complete cycle of MaizeCODE data management. These include publicly accessible scientific workflows for the reproducible and shareable analysis of various functional data, a RESTful API for batch processing and distribution of data and metadata, a searchable data page that lists each MaizeCODE experiment as a reproducible workflow, and integrated JBrowse genome browser tracks linked with workflows and metadata. The SciApps portal is a flexible platform that allows the integration of new analysis tools, workflows, and genomic data from multiple projects. Through metadata and a ready-to-compute cloud-based platform, the portal experience improves access to the MaizeCODE data and facilitates its analysis.

4.
PLoS One ; 14(10): e0224086, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31658277

RESUMO

The sophistication of gene prediction algorithms and the abundance of RNA-based evidence for the maize genome may suggest that manual curation of gene models is no longer necessary. However, quality metrics generated by the MAKER-P gene annotation pipeline identified 17,225 of 130,330 (13%) protein-coding transcripts in the B73 Reference Genome V4 gene set with models of low concordance to available biological evidence. Working with eight graduate students, we used the Apollo annotation editor to curate 86 transcript models flagged by quality metrics and a complimentary method using the Gramene gene tree visualizer. All of the triaged models had significant errors-including missing or extra exons, non-canonical splice sites, and incorrect UTRs. A correct transcript model existed for about 60% of genes (or transcripts) flagged by quality metrics; we attribute this to the convention of elevating the transcript with the longest coding sequence (CDS) to the canonical, or first, position. The remaining 40% of flagged genes resulted in novel annotations and represent a manual curation space of about 10% of the maize genome (~4,000 protein-coding genes). MAKER-P metrics have a specificity of 100%, and a sensitivity of 85%; the gene tree visualizer has a specificity of 100%. Together with the Apollo graphical editor, our double triage provides an infrastructure to support the community curation of eukaryotic genomes by scientists, students, and potentially even citizen scientists.


Assuntos
Curadoria de Dados/métodos , Proteínas de Plantas/genética , Zea mays/genética , Algoritmos , Bases de Dados Genéticas , Educação de Pós-Graduação , Humanos , Modelos Genéticos , Anotação de Sequência Molecular , Estudantes
5.
CBE Life Sci Educ ; 7(3): 310-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18765753

RESUMO

Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day "Plant Genomics and Gene Annotation" workshop was held at Florida A&M University in Tallahassee, FL, to enhance participants' knowledge and understanding of plant molecular genetics and assist them in developing and honing their laboratory and computer skills. Florida A&M University is a historically black university with over 95% African-American student enrollment. Sixteen participants, including high school (56%) and community college faculty (25%), attended the workshop. Participants carried out in vitro and in silico experiments with maize, Arabidopsis, soybean, and food products to determine the genotype of the samples. Benefits of the workshop included increased awareness of plant biology research for high school and college level students. Participants completed pre- and postworkshop evaluations for the measurement of effectiveness. Participants demonstrated an overall improvement in their postworkshop evaluation scores. This article provides a detailed description of workshop activities, as well as assessment and long-term support for broad classroom implementation.


Assuntos
Docentes , Genes de Plantas , Genômica/educação , Plantas/genética , Instituições Acadêmicas , Ensino/métodos , Universidades , Educação , Avaliação Educacional , Avaliação de Programas e Projetos de Saúde , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA