Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 46(2): 213-221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300444

RESUMO

OBJECTIVES: Evaluate electrochemically active biofilms as high energy density rechargeable microbial batteries toward providing persistent power in applications where traditional battery technology is limiting (, remote monitoring applications). RESULTS: Here we demonstrated that an electrochemically active biofilm was able to store and release electrical charge for alternating charge/discharge cycles of up to 24 h periodicity (50% duty cycle) with no significant decrease in average current density (0.16 ± 0.04 A/m2) for over 600 days. However, operation at 24 h periodicity for > 50 days resulted in a sharp decrease in the current to nearly zero. This current crash was recoverable by decreasing the periodicity. Overall, the coulombic efficiency remained near unity within experimental error (102 ± 3%) for all of the tested cycling periods. Electrochemical characterization here suggests that electron transfer occurs through multiple routes, likely a mixture of direct and mediated mechanisms. CONCLUSIONS: These results indicate that bidirectional electrogenic/electrotrophic biofilms are capable of efficient charge storage/release over a wide range of cycling frequency and may eventually enable development of sustainable, high energy density rechargeable batteries.


Assuntos
Fontes de Energia Bioelétrica , Transporte de Elétrons , Biofilmes , Eletricidade
2.
Microb Biotechnol ; 16(3): 494-506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36464922

RESUMO

The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.


Assuntos
Marinobacter , Biotecnologia , Fenótipo , Biologia Sintética , Engenharia Metabólica
3.
Appl Environ Microbiol ; 87(24): e0167621, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613754

RESUMO

Electroactive bacteria are living catalysts, mediating energy-generating reactions at anodes or energy storage reactions at cathodes via extracellular electron transfer (EET). The Cathode-ANode (CANode) biofilm community was recently shown to facilitate both reactions; however, the identities of the primary constituents and underlying molecular mechanisms remain unknown. Here, we used metagenomics and metatranscriptomics to characterize the CANode biofilm. We show that a previously uncharacterized member of the family Desulfobulbaceae, Desulfobulbaceae-2, which had <1% relative abundance, had the highest relative gene expression and accounted for over 60% of all differentially expressed genes. At the anode potential, differential expression of genes for a conserved flavin oxidoreductase (Flx) and heterodisulfide reductase (Hdr) known to be involved in ethanol oxidation suggests a source of electrons for the energy-generating reaction. Genes for sulfate and carbon dioxide reduction pathways were expressed by Desulfobulbaceae-2 at both potentials and are the proposed energy storage reactions. Reduction reactions may be mediated by direct electron uptake from the electrode or from hydrogen generated at the cathode potential. The Desulfobulbaceae-2 genome is predicted to encode at least 85 multiheme (≥3 hemes) c-type cytochromes, some with as many as 26 heme-binding domains, that could facilitate reversible electron transfer with the electrode. Gene expression in other CANode biofilm species was also affected by the electrode potential, although to a lesser extent, and we cannot rule out their contribution to observed current. Results provide evidence of gene expression linked to energy storage and energy-generating reactions and will enable development of the CANode biofilm as a microbially driven rechargeable battery. IMPORTANCE Microbial electrochemical technologies (METs) rely on electroactive bacteria to catalyze energy-generating and energy storage reactions at electrodes. Known electroactive bacteria are not equally capable of both reactions, and METs are typically configured to be unidirectional. Here, we report on genomic and transcriptomic characterization of a recently described microbial electrode community called the Cathode-ANode (CANode). The CANode community is able to generate or store electrical current based on the electrode potential. During periods where energy is not needed, electrons generated from a renewable source, such as solar power, could be converted into energy storage compounds to later be reversibly oxidized by the same microbial catalyst. Thus, the CANode system can be thought of as a living "rechargeable battery." Results show that a single organism may be responsible for both reactions demonstrating a new paradigm for electroactive bacteria.


Assuntos
Deltaproteobacteria , Eletrodos , Metagenômica , Microbiota , Transcriptoma , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo
4.
Appl Environ Microbiol ; 87(17): e0070621, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34190605

RESUMO

A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing ∼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.


Assuntos
Biofilmes , Espaço Extracelular/metabolismo , Geobacter/química , Geobacter/fisiologia , Eletricidade , Eletrodos , Transporte de Elétrons , Espaço Extracelular/química , Geobacter/crescimento & desenvolvimento
5.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414314

RESUMO

Here, we report the genome sequence of Tenacibaculum mesophilum strain ECR, which was isolated from the river/ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and sequencing were performed as part of the 2016 and 2018 Microbial Diversity courses at the Marine Biological Laboratory in Woods Hole, Massachusetts.

6.
Environ Microbiome ; 15(1): 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32835172

RESUMO

The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22-24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium.

7.
Life (Basel) ; 10(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466370

RESUMO

The search for life on Mars is predicated on the idea that Earth and Mars life (if present) should be both carbon- and water-based with similar forms of evolution. However, the astrobiology community can currently only investigate plausible Martian microbial ecosystems by using Terran life-forms as proxies. In order to examine how life might persist on Mars, we used a hypopiezotolerant bacterium (def., able to grow at 7-10 hPa)-Serratia liquefaciens-in growth assays with four Mars analog soils conducted under a subset of simulated Martian conditions including 7 hPa, 0 °C, and a CO2-enriched anoxic atmosphere (called low-PTA conditions). The four Mars analog soils included an Aeolian dust analog, the Mars JSC-1 analog, a Phoenix lander-site simulant, and a high-Salts analog. Serratia liquefaciens cells were able to grow at 30 °C in a liquid minimal basal medium (MBM) supplemented with 10- or 20-mM sucrose, Spizizen salts, and micronutrients. When the four analog soils were doped with both MBM and cells of S. liquefaciens, and subsequently incubated at 30 °C for 72 h, cell densities increased between 2-logs (Phoenix analog) and 4-logs (Aeolian and JSC-1 analogs); the Salts analog led to complete inactivation of S. liquefaciens within 24 h. In contrast, when the experiment was repeated, but incubated under low-PTA conditions, S. liquefaciens cells were either killed immediately by the Salts analog, or decreased by > 5 logs over 28 d by the Aeolian, JSC-1, and Phoenix analogs. The failure of S. liquefaciens to grow in the analog soils under low-PTA conditions was attributed to the synergistic interactions among six factors (i.e., low pressure, low temperature, anoxic atmosphere (i.e., the low-PTA conditions), low-pH in the Salts soil, dissolved salts in all analogs, and oligotrophic conditions) that increased the biocidal or inhibitory conditions within the analog soils. Results suggest that even if a hypopiezotolerant Terran microbe is displaced from a spacecraft surface on Mars, and lands in a hydrated and nutrient-rich niche, growth in the Martian regolith is not automatically assured.

8.
ACS Synth Biol ; 8(12): 2746-2755, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750651

RESUMO

Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.


Assuntos
Engenharia Metabólica , Nitrobenzenos/metabolismo , Floroglucinol/metabolismo , Escherichia coli/metabolismo , Testes Genéticos , Floroglucinol/química
9.
mSystems ; 4(5)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594828

RESUMO

Accurate predictions across multiple fields of microbiome research have far-reaching benefits to society, but there are few widely accepted quantitative tools to make accurate predictions about microbial communities and their functions. More discussion is needed about the current state of microbiome analysis and the tools required to overcome the hurdles preventing development and implementation of predictive analyses. We summarize the ideas generated by participants of the Mid-Atlantic Microbiome Meet-up in January 2019. While it was clear from the presentations that most fields have advanced beyond simple associative and descriptive analyses, most fields lack essential elements needed for the development and application of accurate microbiome predictions. Participants stressed the need for standardization, reproducibility, and accessibility of quantitative tools as key to advancing predictions in microbiome analysis. We highlight hurdles that participants identified and propose directions for future efforts that will advance the use of prediction in microbiome research.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30714042

RESUMO

We report here the draft genome sequence of a strain of Tenacibaculum discolor (Bacteroidetes) that was isolated from the river-ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and genomic sequencing were performed during the 2016 and 2018 Microbial Diversity summer programs at the Marine Biological Laboratory in Woods Hole, Massachusetts.

11.
Microorganisms ; 6(2)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690617

RESUMO

Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

12.
Astrobiology ; 18(1): 73-85, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314901

RESUMO

Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.


Assuntos
Ecossistema , Elétrons , Fontes Geradoras de Energia , Meio Ambiente Extraterreno , Origem da Vida , Lua , Processos Fotoquímicos , Sistema Solar
13.
Astrobiology ; 17(5): 401-412, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28459604

RESUMO

The growth of Serratia liquefaciens has been demonstrated under martian conditions of 0.7 kPa (7 mbar), 0°C, and CO2-enriched anoxic atmospheres (Schuerger et al., 2013, Astrobiology 13:115-131), but studies into the survivability of cells under hypersaline conditions that are likely to be encountered on Mars are lacking. Serratia liquefaciens cells were suspended in aqueous MgSO4 solutions, or frozen brines, and exposed to terrestrial (i.e., 101.3 kPa, 24°C, O2/N2-normal atmosphere) or martian (i.e., 0.7 kPa, -25°C, CO2-anoxic atmosphere) conditions to assess the roles of MgSO4 and UV irradiation on the survival of S. liquefaciens. Four solutions were tested for their capability to attenuate martian UV irradiation in both liquid and frozen forms: sterile deionized water (SDIW), 10 mM PO4 buffer, 5% MgSO4, and 10% MgSO4. None of the solutions in either liquid or frozen forms provided enhanced protection against martian UV irradiation. Sixty minutes of UV irradiation reduced cell densities from 2.0 × 106 cells/mL to less than 10 cells/mL for both liquid and frozen solutions. In contrast, 3-4 mm of a Mars analog soil were sufficient to attenuate 100% of UV irradiation. Results suggest that terrestrial microorganisms may not survive on Sun-exposed surfaces on Mars, even if the cells are embedded in frozen martian brines composed of MgSO4. However, if dispersed microorganisms can be covered by only a few millimeters of dust or regolith, long-term survival is probable. Key Words: Hypobaria-Mars-Planetary protection-Brines. Astrobiology 17, 401-412.


Assuntos
Serratia liquefaciens/efeitos da radiação , Raios Ultravioleta , Exobiologia , Meio Ambiente Extraterreno , Gelo , Sulfato de Magnésio , Serratia liquefaciens/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA