Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
EMBO Mol Med ; 15(11): e15984, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792911

RESUMO

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroproteção , Animais , Humanos , Camundongos , alfa Carioferinas/farmacologia , Cognição , Fosforilação , Transdução de Sinais
2.
Neurobiol Dis ; 181: 106106, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001613

RESUMO

Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-ß (Aß) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aß42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aß induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anticonvulsivantes/farmacologia , Lamotrigina/efeitos adversos , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Convulsões/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle
4.
Biomolecules ; 12(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35454121

RESUMO

Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.


Assuntos
Carcinogênese , Meio Social , Proteína Supressora de Tumor p53 , Animais , Feminino , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética
5.
Brain Sci ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203970

RESUMO

Imaging in neurosciences allows for the visual representation of micro- and macro-components of the central (CNS) and peripheral (PNS) nervous systems with the intent of investigating their morphology and function, to provide diagnosis and prognosis of neurological diseases and to monitor responses to treatments [...].

6.
Neural Plast ; 2022: 9959044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075360

RESUMO

The mammalian hippocampal dentate gyrus is a niche for adult neurogenesis from neural stem cells. Newborn neurons integrate into existing neuronal networks, where they play a key role in hippocampal functions, including learning and memory. In the ageing brain, neurogenic capability progressively declines while in parallel increases the risk for developing Alzheimer's disease (AD), the main neurodegenerative disorder associated with memory loss. Numerous studies have investigated whether impaired adult neurogenesis contributes to memory decline in AD. Here, we review the literature on adult hippocampal neurogenesis (AHN) and AD by focusing on both human and mouse model studies. First, we describe key steps of AHN, report recent evidence of this phenomenon in humans, and describe the specific contribution of newborn neurons to memory, as evinced by animal studies. Next, we review articles investigating AHN in AD patients and critically examine the discrepancies among different studies over the last two decades. Also, we summarize researches investigating AHN in AD mouse models, and from these studies, we extrapolate the contribution of molecular factors linking AD-related changes to impaired neurogenesis. Lastly, we examine animal studies that link impaired neurogenesis to specific memory dysfunctions in AD and review treatments that have the potential to rescue memory capacities in AD by stimulating AHN.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Memória/fisiologia , Neurogênese/fisiologia , Animais , Humanos , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia
7.
Brain Sci ; 11(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34573265

RESUMO

Sarcopenia, a geriatric syndrome involving loss of muscle mass and strength, is often associated with the early phases of Alzheimer's disease (AD). Pathological hallmarks of AD including amyloid ß (Aß) aggregates which can be found in peripheral tissues such as skeletal muscle. However, not much is currently known about their possible involvement in sarcopenia. We investigated neuronal innervation in skeletal muscle of Tg2576 mice, a genetic model for Aß accumulation. We examined cholinergic innervation of skeletal muscle in adult Tg2576 and wild type mice by immunofluorescence labeling of tibialis anterior (TA) muscle sections using antibodies raised against neurofilament light chain (NFL) and acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT). Combining this histological approach with real time quantification of mRNA levels of nicotinic acetylcholine receptors, we demonstrated that in the TA of Tg2576 mice, neuronal innervation is significantly reduced and synaptic area is smaller and displays less ChAT content when compared to wild type mice. Our study provides the first evidence of reduced cholinergic innervation of skeletal muscle in a mouse model of Aß accumulation. This evidence sustains the possibility that sarcopenia in AD originates from Aß-mediated cholinergic loss.

8.
Pharmacol Res ; 172: 105795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339837

RESUMO

Neuroinflammation can severely affect brain homeostasis and adult hippocampal neurogenesis with detrimental effects on cognitive processes. Brain and gut are intimately connected via the "gut-brain axis", a bidirectional communication system, and the administration of live bacteria (probiotics) has been shown to represent an intriguing approach for the prevention or even the cure of several diseases. In the present study we evaluated the putative neuroprotective effect of 15-days consumption of a multi-strain probiotic formulation based on food-associated strains and human gut bacteria at the dose of 109 CFU/mouse/day in a mouse model of acute inflammation, induced by an intraperitoneal single injection of LPS (0.1 mg/kg) at the end of probiotic administration. The results indicate that the prolonged administration of the multi-strain probiotic formulation not only prevents the LPS-dependent increase of pro-inflammatory cytokines in specific regions of the brain (hippocampus and cortex) and in the gastrointestinal district but also triggers a potent proneurogenic response capable of enhancing hippocampal neurogenesis. This effect is accompanied by a potentiation of intestinal barrier, as documented by the increased epithelial junction expression in the colon. Our hypothesis is that pre-treatment with the multi-strain probiotic formulation helps to create a systemic protection able to counteract or alleviate the effects of LPS-dependent acute pro-inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Eixo Encéfalo-Intestino , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Probióticos , Animais , Ansiedade , Encéfalo/citologia , Caderinas/metabolismo , Colo/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Comportamento Exploratório , Comportamento de Doença , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Neurogênese , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/microbiologia , Ocludina/metabolismo
9.
Aging Cell ; 19(9): e13189, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729663

RESUMO

Autophagy agonists have been proposed to slow down neurodegeneration. Spermidine, a polyamine that acts as an autophagy agonist, is currently under clinical trial for the treatment of age-related memory decline. How Spermidine and other autophagy agonists regulate memory and synaptic plasticity is under investigation. We set up a novel mouse model of mild cognitive impairment (MCI), in which middle-aged (12-month-old) mice exhibit impaired memory capacity, lysosomes engulfed with amyloid fibrils (ß-amyloid and α-synuclein) and impaired task-induced GluA1 hippocampal post-translation modifications. Subchronic treatment with Spermidine as well as the autophagy agonist TAT-Beclin 1 rescued memory capacity and GluA1 post-translational modifications by favouring the autophagy/lysosomal-mediated degradation of amyloid fibrils. These findings provide new mechanistic evidence on the therapeutic relevance of autophagy enhancers which, by improving the degradation of misfolded proteins, slow down age-related memory decline.


Assuntos
Autofagia/genética , Disfunção Cognitiva/genética , Memória/efeitos dos fármacos , Envelhecimento , Animais , Modelos Animais de Doenças , Camundongos
10.
iScience ; 23(5): 101078, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361506

RESUMO

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions. How these developmental processes influence the formation of neural circuits and affect adult brain function is unknown. Here, we show that early deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects the integration and maturation of newly formed DGCs in the hippocampal circuitry and drives a premature shift from depolarizing to hyperpolarizing GABAergic actions in the target of DGCs, the CA3 principal cells of the hippocampus, by reducing the expression of the cation-chloride importer Nkcc1. These changes lead to the disruption of early synchronized neuronal activity at the network level and impaired morphological maturation of CA3 pyramidal neurons, ultimately contributing to altered adult hippocampal synaptic plasticity and cognitive processes.

11.
Curr Alzheimer Res ; 17(3): 259-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091333

RESUMO

BACKGROUND: Clinical evidence indicates that patients affected by Alzheimer's Disease (AD) fail to form new memories although their memories for old events are intact. This amnesic pattern depends on the selective vulnerability to AD-neurodegeneration of the hippocampus, the brain region that sustains the formation of new memories, while cortical regions that store remote memories are spared. OBJECTIVE: To identify the cellular mechanisms underlying impaired recent memories and intact remote memories in a mouse model of AD. METHODS: Glutamatergic synaptic currents were recorded by patch-clamp in acute hippocampal and anterior Cingulate Cortical (aCC) slices of AD-like Tg2576 mice and Wild-type (Wt) littermates subjected to the Contextual Fear Conditioning (CFC) task or in naïve conditions. RESULTS: We identified a deficit in the formation of recent memories, but not in the recall of remote ones, in Tg2576 mice. With electrophysiological recordings, we detected CFC-induced modifications of the AMPA/NMDA ratio in CA1 pyramidal cells of Wt, but not Tg2576, mice one day after training. CFC-induced changes in the AMPA/NMDA ratio were also detected in the aCC of both Wt and Tg2576 mice 8 days after training. CONCLUSION: Our data suggest that in the early AD stages synaptic plasticity of CA1 synapses, crucial to form new memories, is lost, while plasticity of aCC synapses is intact and contributes to the persistence of long-term memories.


Assuntos
Doença de Alzheimer/fisiopatologia , Amnésia Anterógrada/fisiopatologia , Região CA1 Hipocampal/fisiologia , Giro do Cíngulo/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Precursor de Proteína beta-Amiloide , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transmissão Sináptica/fisiologia
13.
Cell Death Differ ; 27(3): 934-948, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31591472

RESUMO

Alterations of adult neurogenesis have been reported in several Alzheimer's disease (AD) animal models and human brains, while defects in this process at presymptomatic/early stages of AD have not been explored yet. To address this, we investigated potential neurogenesis defects in Tg2576 transgenic mice at 1.5 months of age, a prodromal asymptomatic age in terms of Aß accumulation and neurodegeneration. We observe that Tg2576 resident and SVZ-derived adult neural stem cells (aNSCs) proliferate significantly less. Further, they fail to terminally differentiate into mature neurons due to pathological, tau-mediated, and microtubule hyperstabilization. Olfactory bulb neurogenesis is also strongly reduced, confirming the neurogenic defect in vivo. We find that this phenotype depends on the formation and accumulation of intracellular A-beta oligomers (AßOs) in aNSCs. Indeed, impaired neurogenesis of Tg2576 progenitors is remarkably rescued both in vitro and in vivo by the expression of a conformation-specific anti-AßOs intrabody (scFvA13-KDEL), which selectively interferes with the intracellular generation of AßOs in the endoplasmic reticulum (ER). Altogether, our results demonstrate that SVZ neurogenesis is impaired already at a presymptomatic stage of AD and is caused by endogenously generated intracellular AßOs in the ER of aNSCs. From a translational point of view, impaired SVZ neurogenesis may represent a novel biomarker for AD early diagnosis, in association to other biomarkers. Further, this study validates intracellular Aß oligomers as a promising therapeutic target and prospects anti-AßOs scFvA13-KDEL intrabody as an effective tool for AD treatment.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Espaço Intracelular/metabolismo , Degeneração Neural/complicações , Neurogênese , Multimerização Proteica , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Camundongos Transgênicos , Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/patologia , Bulbo Olfatório/metabolismo , Conformação Proteica
14.
Mol Neurobiol ; 56(11): 7534-7556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31062248

RESUMO

In the subventricular zone (SVZ) of the adult brain, the neural stem cells (NSCs) ensure a continuous supply of new neurons to the olfactory bulb (OB), playing a key role in its plasticity and olfactory-related behavior. The activation and expansion of NSCs within the SVZ are finely regulated by environmental and intrinsic factors. Running represents one of the most powerful neurogenic stimuli, although is ineffective in enhancing SVZ neurogenesis. The cell cycle inhibitor p21 is an intrinsic inhibitor of NSCs' expansion through the maintenance of their quiescence and the restrain of neural progenitor proliferation. In this work, we decided to test whether running unveils the intrinsic neurogenic potential of p21-lacking NSCs. To test this hypothesis, we examined the effect of three different paradigms of voluntary running (5, 12, and 21 days) on SVZ neurogenesis of p21 knockout (KO) male mice at two different stages of development, 2 and 12 months of age. In vivo and in vitro data clearly demonstrate that physical activity is consistent with the activation and expansion of NSCs and with the enhancement of SVZ neurogenesis in p21 KO mice. We also found that 12 days of running contribute to the increase in the number of new neurons functionally active within the OB, which associates with an improvement in olfactory performance strictly dependent on adult SVZ neurogenesis, i.e., the odor detection threshold and short-term olfactory memory. These data suggest that in the adult SVZ of p21 KO mice, NSCs retain a high neurogenic potential, triggered by physical activity, with long-term consequences in olfactory-related behavior.


Assuntos
Comportamento Animal , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Bulbo Olfatório/metabolismo , Condicionamento Físico Animal , Animais , Movimento Celular , Autorrenovação Celular , Fase G1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
15.
Biol Psychiatry ; 86(3): 185-195, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528194

RESUMO

BACKGROUND: A consistent proportion of individuals at risk for Alzheimer's disease show intact cognition regardless of the extensive accumulation of amyloid-ß (Aß) peptide in their brain. Several pieces of evidence indicate that overactivation of brain regions negative for Aß can compensate for the underactivation of Aß-positive ones to preserve cognition, but the underlying synaptic changes are still unexplored. METHODS: Using Golgi staining, we investigate how dendritic spines rearrange following contextual fear conditioning (CFC) in the hippocampus and amygdala of presymptomatic Tg2576 mice, a genetic model for Aß accumulation. A molecular biology approach combined with intrahippocampal injection of a γ-secretase inhibitor evaluates the impact of Aß fluctuations on spine rearrangements. RESULTS: Encoding of CFC increases Aß oligomerization in the hippocampus but not in the amygdala of Tg2576 mice. The presence of Aß oligomers predicts vulnerability to network dysfunctions, as low c-Fos activation and spine maturation are detected in the hippocampus of Tg2576 mice upon recall of CFC memory. Rather, enhanced c-Fos activation and new spines are evident in the amygdala of Tg2576 mice compared with wild-type control mice. Preventing Aß increase in the hippocampus of Tg2576 mice restores CFC-associated spine changes to wild-type levels in both the hippocampus and amygdala. CONCLUSIONS: Our study provides the first evidence of neural compensation consisting of enhanced synaptic activity in brain regions spared by Aß load. Furthermore, it unravels an activity-mediated feedback loop through which neuronal activation during CFC encoding favors Aß oligomerization in the hippocampus and prevents synaptic rearrangements in this region.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Espinhas Dendríticas/fisiologia , Medo/fisiologia , Memória , Vias Neurais/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal
16.
Brain Struct Funct ; 222(9): 3889-3898, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28478549

RESUMO

Degradation of the chondroitin sulfate proteoglycans of the extracellular matrix (ECM) by injections of the bacterial enzyme chondroitinase ABC (ChABC) in the basolateral amygdala (BLA) does not impair fear memory formation but accelerates its extinction and disrupts its reactivation. These observations suggest that the treatment might selectively interfere with the post-extinction features of neurons that mediate the reinstatement of fear. Here, we report that ChABC mice show regular fear memory and memory-driven c-fos activation and dendritic spine formation in the BLA. These mice then rapidly extinguish their fear response and exhibit a post-extinction concurrent reduction in c-fos activation and large dendritic spines that extends to the anterior cingulate cortex 7 days later. At this remote time point, fear renewal and fear retrieval are impaired. These findings show that a non-cellular component of the brain tissue controls post-extinction levels of neuronal activity and spine enlargement in the regions sequentially remodelled during the formation of recent and remote fear memory. By preventing BLA and aCC neurons to retain neuronal features that serve to reactivate an extinguished fear memory, ECM digestion might offer a therapeutic strategy for durable attenuation of traumatic memories.


Assuntos
Matriz Extracelular/metabolismo , Medo , Neurônios/ultraestrutura , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condroitina ABC Liase/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Lectinas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de N-Acetilglucosamina/metabolismo , Coloração pela Prata
17.
Sci Rep ; 7: 42370, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28205565

RESUMO

The Entorhinal cortex (EC) has been implicated in the early stages of Alzheimer's disease (AD). In particular, spreading of neuronal dysfunction within the EC-Hippocampal network has been suggested. We have investigated the time course of EC dysfunction in the AD mouse model carrying human mutation of amyloid precursor protein (mhAPP) expressing human Aß. We found that in mhAPP mice plasticity impairment is first observed in EC superficial layer and further affected with time. A selective impairment of LTP was observed in layer II horizontal connections of EC slices from 2 month old mhAPP mice, whereas at later stage of neurodegeneration (6 month) basal synaptic transmission and LTD were also affected. Accordingly, early synaptic deficit in the mhAPP mice were associated with a selective impairment in EC-dependent associative memory tasks. The introduction of the dominant-negative form of RAGE lacking RAGE signalling targeted to microglia (DNMSR) in mhAPP mice prevented synaptic and behavioural deficit, reducing the activation of stress related kinases (p38MAPK and JNK). Our results support the involvement of the EC in the development and progression of the synaptic and behavioural deficit during amyloid-dependent neurodegeneration and demonstrate that microglial RAGE activation in presence of Aß-enriched environment contributes to the EC vulnerability.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Córtex Entorrinal/fisiopatologia , Microglia/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Mutação/genética , Degeneração Neural/patologia , Plasticidade Neuronal , Fosforilação , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Sinapses/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Neural Plast ; 2017: 5281829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29435372

RESUMO

Neuronal activity has a strong causal role in the production and release of the neurotoxic ß-amyloid peptide (Aß). Because of this close link, gradual accumulation of Aß into amyloid plaques has been reported in brain areas with intense neuronal activity, including cortical regions that display elevated activation at resting state. However, the link between Aß and activity is not always linear and recent studies report exceptions to the view of "more activity, more plaques." Here, we review the literature about the activity-dependent production of Aß in both human cases and AD models and focus on the evidences that brain regions with elevated convergence of synaptic connections (herein referred to as brain nodes) are particularly vulnerable to Aß accumulation. Next, we will examine data supporting the hypothesis that, since Aß is released from synaptic terminals, ß-amyloidosis can spread in AD brain by advancing through synaptically connected regions, which makes brain nodes vulnerable to Aß accumulation. Finally, we consider possible mechanisms that account for ß-amyloidosis progression through synaptically linked regions.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Amiloidose/complicações , Animais , Humanos , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Transmissão Sináptica
19.
Cell Rep ; 17(12): 3269-3280, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009295

RESUMO

The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior.


Assuntos
Processamento Alternativo/genética , Rede Nervosa , Células Piramidais/metabolismo , Proteínas de Ligação a RNA/genética , Sinapses/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Comportamento Animal/fisiologia , Proteínas de Ligação ao Cálcio , Homeostase/genética , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sinapses/fisiologia
20.
Neuro Oncol ; 18(12): 1634-1643, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27298309

RESUMO

BACKGROUND: Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. METHODS: We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. RESULTS: Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. CONCLUSIONS: Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies.


Assuntos
Toxinas Bacterianas/administração & dosagem , Neoplasias Encefálicas/fisiopatologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas Ativadoras de GTPase/metabolismo , Glioblastoma/fisiopatologia , Neurônios/fisiologia , Animais , Toxinas Bacterianas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Eletrofisiologia , Proteínas de Escherichia coli/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteômica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA