Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405409

RESUMO

Tuatara are the sole extant species in the reptile order Rhynchocephalia. They are ecologically and evolutionarily unique, having been isolated geographically for ~84 million years and evolutionarily from their closest living relatives for ~250 million years. Here we report the tuatara gut bacterial community for the first time. We sampled the gut microbiota of translocated tuatara at five sanctuaries spanning a latitudinal range of ~1000 km within Aotearoa New Zealand, as well as individuals from the source population on Takapourewa (Stephens Island). This represents a first look at the bacterial community of the order Rhynchocephalia and provides the opportunity to address several key hypotheses, namely that the tuatara gut microbiota: (1) differs from those of other reptile orders; (2) varies among geographic locations but is more similar at sites with more similar temperatures and (3) is shaped by tuatara body condition, parasitism and ambient temperature. We found significant drivers of the microbiota in sampling site, tuatara body condition, parasitism and ambient temperature, suggesting the importance of these factors when considering tuatara conservation. We also derived a 'core' community of shared bacteria across tuatara at many sites, despite their geographic range and isolation. Remarkably, >70% of amplicon sequence variants could not be assigned to known genera, suggesting a largely undescribed gut bacterial community for this ancient host species.

2.
Mol Ecol ; 32(22): 6044-6058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795930

RESUMO

An animal's gut microbiota plays an important role in host health, reproduction and digestion. However, many studies focus on only a few individuals or a single species, limiting our ability to recognize emergent patterns across a wider taxonomic grouping. Here, we compiled and reanalysed published 16S rRNA gene sequence data for 745 gut microbiota samples from 91 reptile species using a uniform bioinformatics pipeline to draw broader conclusions about the taxonomy of the reptile gut microbiota and the forces shaping it. Our meta-analysis revealed the significant differences in alpha- and beta-diversity across host order, environment, diet, habitat and conservation status, with host diet and order contributing the most to these differences. We identified the principal bacterial phyla present in the reptile gut microbiota as Bacteroidota, Proteobacteria (mostly Gamma class), and Firmicutes, and detected the bacterial genus Bacteroides in most reptile individuals, thus representing a putative 'core' microbiota. Our study provides novel insights into key drivers of the reptile gut microbiota, highlights existing knowledge gaps and lays the groundwork for future research on these fascinating hosts and their associated microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Genes de RNAr , Répteis/genética
3.
Environ Microbiol ; 25(4): 832-835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36510852

RESUMO

Holobiont research has increasingly moved from descriptive studies to sophisticated field- and laboratory-based manipulations; however, the extent to which changes in the holobiont persist remains largely unknown. In this Burning Question, we ask whether the underlying principles of the holobiont concept, whereby an externally applied evolutionary pressure can lead to a beneficial change in host-associated microbial community composition, could be used to facilitate microbiome engineering and thereby addition of a new ecosystem service that persists across generations. The answer to this question has potential implications for diverse fields including symbiosis, conservation and biotechnology.


Assuntos
Microbiota , Microbiota/genética , Evolução Biológica , Simbiose , Biotecnologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-26264523

RESUMO

Colonisation of a host by pathogenic microorganisms is a near constant threat to the health of all vertebrates and most species have evolved an efficient adaptive immune response which produces antibodies following exposure to a specific antigen. The strength of this response can be influenced by many factors including sex and season. Tuatara are exposed to Salmonella through contact with infected skinks and soil; however, no gastrointestinal colonisation of tuatara with Salmonella has been found. Using Western blot and flow cytometry we have demonstrated that tuatara possess antibodies which recognise Salmonella antigens, but many of these antibodies are not specific and are cross-reactive with two closely related and ubiquitous bacteria, Escherichia coli and Citrobacter koseri. Our study describes the anti-Salmonella immune responses in tuatara and will help to inform decisions around maintaining wildlife health, as well as providing important insights into the role and development of adaptive immunity in reptilian species.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Lagartos/imunologia , Salmonella/imunologia , Imunidade Adaptativa , Animais , Animais Selvagens/imunologia , Western Blotting , Citrobacter koseri/imunologia , Reações Cruzadas , Escherichia coli/imunologia , Lagartos/microbiologia
5.
J Wildl Dis ; 50(3): 655-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807185

RESUMO

A wide variety of Salmonella serotypes occurs within reptilian hosts, but their ecology is poorly understood. We collected cloacal swabs from tuatara (Sphenodon punctatus), fairy prions (Pachyptila turtur), and skinks (Oligosoma spp.) on Stephens Island, New Zealand, to screen for Salmonella. Soil samples were also collected from inside burrows of tuatara and fairy prions and tested for Salmonella. We sampled repeatedly from October 2009 to October 2011. Cloacal swabs were collected from 620 tuatara, and no intestinal shedding of Salmonella was detected. Similarly, no Salmonella was detected in fairy prions. In contrast, we isolated Salmonella from 6.5% of skinks and 8.4% of soil samples. We identified two serovars of Salmonella from 52 isolates, Salmonella Saintpaul and Salmonella Mississippi. Salmonella Mississippi was isolated from skinks only and S. Saintpaul was found in skinks and soil samples. Salmonella persists in this ecosystem with skinks as the main wildlife reservoir, and an environmental reservoir exists in the soil from burrows used by skinks, tuatara, and fairy prions. Salmonella was absent from skinks and the soil in winter, raising the question of bacteria persisting through winter.


Assuntos
Reservatórios de Doenças/veterinária , Ecossistema , Microbiologia Ambiental , Répteis , Salmonelose Animal/microbiologia , Estações do Ano , Animais , Animais Selvagens , Ilhas , Nova Zelândia/epidemiologia , Salmonella/isolamento & purificação , Salmonelose Animal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA