Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(4): 1847-1860, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544222

RESUMO

Chromosome duplication initiates via the assembly of replication fork complexes at defined origins, from where they proceed in opposite directions until they fuse with a converging fork. Recent work highlights that the completion of DNA replication is highly complex in both pro- and eukaryotic cells. In this study we have investigated how 3' and 5' exonucleases contribute towards the successful termination of chromosome duplication in Escherichia coli. We show that the absence of 3' exonucleases can trigger levels of over-replication in the termination area robust enough to allow successful chromosome duplication in the absence of oriC firing. Over-replication is completely abolished if replication fork complexes are prevented from fusing by chromosome linearization. Our data strongly support the idea that 3' flaps are generated as replication fork complexes fuse. In the absence of 3' exonucleases, such as ExoI, these 3' flaps can be converted into 5' flaps, which are degraded by 5' exonucleases, such as ExoVII and RecJ. Our data support the idea that multiple protein activities are required to process fork fusion intermediates. They highlight the complexity of fork fusions and further support the idea that the termination area evolved to contain fork fusion-mediated pathologies.


Assuntos
Duplicação Cromossômica/genética , Replicação do DNA/genética , Escherichia coli/genética , Exonucleases/genética , Cromossomos Bacterianos/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Complexo de Reconhecimento de Origem/genética
2.
DNA Repair (Amst) ; 70: 37-48, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30145455

RESUMO

Bacterial chromosome duplication is initiated at a single origin (oriC). Two forks are assembled and proceed in opposite directions with high speed and processivity until they fuse and terminate in a specialised area opposite to oriC. Proceeding forks are often blocked by tightly-bound protein-DNA complexes, topological strain or various DNA lesions. In Escherichia coli the RecBCD protein complex is a key player in the processing of double-stranded DNA (dsDNA) ends. It has important roles in the repair of dsDNA breaks and the restart of forks stalled at sites of replication-transcription conflicts. In addition, ΔrecB cells show substantial amounts of DNA degradation in the termination area. In this study we show that head-on encounters of replication and transcription at a highly-transcribed rrn operon expose fork structures to degradation by nucleases such as SbcCD. SbcCD is also mostly responsible for the degradation in the termination area of ΔrecB cells. However, additional processes exacerbate degradation specifically in this location. Replication profiles from ΔrecB cells in which the chromosome is linearized at two different locations highlight that the location of replication termination can have some impact on the degradation observed. Our data improve our understanding of the role of RecBCD at sites of replication-transcription conflicts as well as the final stages of chromosome duplication. However, they also highlight that current models are insufficient and cannot explain all the molecular details in cells lacking RecBCD.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Exodesoxirribonuclease V/deficiência , Transcrição Gênica , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo
3.
Nucleic Acids Res ; 46(15): 7701-7715, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29982635

RESUMO

Chromosome duplication initiates via the assembly of replication forks at defined origins. Forks proceed in opposite directions until they fuse with a converging fork. Recent work highlights that fork fusions are highly choreographed both in pro- and eukaryotic cells. The circular Escherichia coli chromosome is replicated from a single origin (oriC), and a single fork fusion takes place in a specialised termination area opposite oriC that establishes a fork trap mediated by Tus protein bound at ter sequences that allows forks to enter but not leave. Here we further define the molecular details of fork fusions and the role of RecG helicase in replication termination. Our data support the idea that fork fusions have the potential to trigger local re-replication of the already replicated DNA. In ΔrecG cells this potential is realised in a substantial fraction of cells and is dramatically elevated when one fork is trapped for some time before the converging fork arrives. They also support the idea that the termination area evolved to contain such over-replication and we propose that the stable arrest of replication forks at ter/Tus complexes is an important feature that limits the likelihood of problems arising as replication terminates.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Mutação , Conformação de Ácido Nucleico , Origem de Replicação/genética
4.
Genes (Basel) ; 7(8)2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27463728

RESUMO

Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3' exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism.

5.
mBio ; 6(6): e01294-15, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26530381

RESUMO

UNLABELLED: Chromosome replication is regulated in all organisms at the assembly stage of the replication machinery at specific origins. In Escherichia coli, the DnaA initiator protein regulates the assembly of replication forks at oriC. This regulation can be undermined by defects in nucleic acid metabolism. In cells lacking RNase HI, replication initiates independently of DnaA and oriC, presumably at persisting R-loops. A similar mechanism was assumed for origin-independent synthesis in cells lacking RecG. However, recently we suggested that this synthesis initiates at intermediates resulting from replication fork fusions. Here we present data suggesting that in cells lacking RecG or RNase HI, origin-independent synthesis arises by different mechanisms, indicative of these two proteins having different roles in vivo. Our data support the idea that RNase HI processes R-loops, while RecG is required to process replication fork fusion intermediates. However, regardless of how origin-independent synthesis is initiated, a fraction of forks will proceed in an orientation opposite to normal. We show that the resulting head-on encounters with transcription threaten cell viability, especially if taking place in highly transcribed areas. Thus, despite their different functions, RecG and RNase HI are both important factors for maintaining replication control and orientation. Their absence causes severe replication problems, highlighting the advantages of the normal chromosome arrangement, which exploits a single origin to control the number of forks and their orientation relative to transcription, and a defined termination area to contain fork fusions. Any changes to this arrangement endanger cell cycle control, chromosome dynamics, and, ultimately, cell viability. IMPORTANCE: Cell division requires unwinding of millions of DNA base pairs to generate the template for RNA transcripts as well as chromosome replication. As both processes use the same template, frequent clashes are unavoidable. To minimize the impact of these clashes, transcription and replication in bacteria follow the same directionality, thereby avoiding head-on collisions. This codirectionality is maintained by a strict regulation of where replication is started. We have used Escherichia coli as a model to investigate cells in which the defined location of replication initiation is compromised. In cells lacking either RNase HI or RecG, replication initiates away from the defined replication origin, and we discuss the different mechanisms by which this synthesis arises. In addition, the resulting forks proceed in a direction opposite to normal, thereby inducing head-on collisions between transcription and replication, and we show that the resulting consequences are severe enough to threaten the viability of cells.


Assuntos
Duplicação Cromossômica , Cromossomos Bacterianos/genética , Replicação do DNA , Escherichia coli/genética , Origem de Replicação , Replicação do DNA/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Viabilidade Microbiana , Ribonuclease H/genética , Ribonuclease H/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA