Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 202(5): E130-E146, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963120

RESUMO

AbstractDisease control can induce both demographic and evolutionary responses in host-parasite systems. Foreseeing the outcome of control therefore requires knowledge of the eco-evolutionary feedback between control and system. Previous work has assumed that control strategies have a homogeneous effect on the parasite population. However, this is not true when control targets those traits that confer to the parasite heterogeneous levels of resistance, which can additionally be related to other key parasite traits through evolutionary trade-offs. In this work, we develop a minimal model coupling epidemiological and evolutionary dynamics to explore possible trait-dependent effects of control strategies. In particular, we consider a parasite expressing continuous levels of a trait-determining resource exploitation and a control treatment that can be either positively or negatively correlated with that trait. We demonstrate the potential of trait-dependent control by considering that the decision maker may want to minimize both the damage caused by the disease and the use of treatment, due to possible environmental or economic costs. We identify efficient strategies showing that the optimal type of treatment depends on the amount applied. Our results pave the way for the study of control strategies based on evolutionary constraints, such as collateral sensitivity and resistance costs, which are receiving increasing attention for both public health and agricultural purposes.


Assuntos
Parasitos , Animais , Evolução Biológica , Interações Hospedeiro-Parasita
2.
J Theor Biol ; 531: 110884, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34481862

RESUMO

Realistic fitness landscapes generally display a redundancy-fitness trade-off: highly fit trait configurations are inevitably rare, while less fit trait configurations are expected to be more redundant. The resulting sub-optimal patterns in the fitness distribution are typically described by means of effective formulations, where redundancy provided by the presence of neutral contributions is modelled implicitly, e.g. with a bias of the mutation process. However, the extent to which effective formulations are compatible with explicitly redundant landscapes is yet to be understood, as well as the consequences of a potential miss-match. Here we investigate the effects of such trade-off on the evolution of phenotype-structured populations, characterised by continuous quantitative traits. We consider a typical replication-mutation dynamics, and we model redundancy by means of two dimensional landscapes displaying both selective and neutral traits. We show that asymmetries of the landscapes will generate neutral contributions to the marginalised fitness-level description, that cannot be described by effective formulations, nor disentangled by the full trait distribution. Rather, they appear as effective sources, whose magnitude depends on the geometry of the landscape. Our results highlight new important aspects on the nature of sub-optimality. We discuss practical implications for rapidly mutant populations such as pathogens and cancer cells, where the qualitative knowledge of their trait and fitness distributions can drive disease management and intervention policies.


Assuntos
Modelos Genéticos , Seleção Genética , Evolução Biológica , Mutação , Fenótipo
3.
PLoS Comput Biol ; 17(1): e1008617, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471791

RESUMO

Multicellular organization is particularly vulnerable to conflicts between different cell types when the body forms from initially isolated cells, as in aggregative multicellular microbes. Like other functions of the multicellular phase, coordinated collective movement can be undermined by conflicts between cells that spend energy in fuelling motion and 'cheaters' that get carried along. The evolutionary stability of collective behaviours against such conflicts is typically addressed in populations that undergo extrinsically imposed phases of aggregation and dispersal. Here, via a shift in perspective, we propose that aggregative multicellular cycles may have emerged as a way to temporally compartmentalize social conflicts. Through an eco-evolutionary mathematical model that accounts for individual and collective strategies of resource acquisition, we address regimes where different motility types coexist. Particularly interesting is the oscillatory regime that, similarly to life cycles of aggregative multicellular organisms, alternates on the timescale of several cell generations phases of prevalent solitary living and starvation-triggered aggregation. Crucially, such self-organized oscillations emerge as a result of evolution of cell traits associated to conflict escalation within multicellular aggregates.


Assuntos
Evolução Biológica , Agregação Celular/fisiologia , Movimento Celular/fisiologia , Modelos Biológicos , Biologia Computacional , Dictyostelium/citologia , Dictyostelium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA