Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 247: 105224, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788351

RESUMO

Bisphenols belong to the group of environmental pollutants with proven harmful impact on human red blood cells. However, the exact effect of these substances may vary depending on the lipid composition of the cell membrane, since this structure is the first barrier between the cell interior and the external environment. The aim of this work was to analyze the influence of bisphenol A (BPA), bisphenol S (BPS) and their 1:1 mixture on model human erythrocyte membranes, composed of sphingomyelin (SM), phospatidylcholine (PC) and cholesterol (Chol). Due to the postulated correlation between the content of cholesterol in biomembranes and the toxic effect of bisphenols the model systems of different sterol concentrations (10, 20 and 40 mol% of Chol) were used in the studies. In the experiments, Langmuir monolayer technique accompanied with Brewster Angle Microscopy were applied and liposome properties were investigated. The obtained findings reveal that, in the investigated range of the sterol content, the effect of BPA, namely the changes of the organization and stability of model membranes and weakening of the attractive lipid-lipid interactions, is strongly dependent on the concentration of Chol in the system. The higher the sterol content, the stronger the BPA-induced alterations in membrane properties. However taking into account the results reported previously for the system containing 33.3% of cholesterol, it seems that the relationship between the effect of BPA and the amount of Chol is not linear for higher sterol concentrations. In contrast, BPS shows a much weaker influence on model erythrocyte membranes and does not act selectively on the systems studied. The effect of a mixture of BPA and BPS is intermediate between that of BPA and BPS used separately, however, the observed effects appear to be determined only by the presence of BPA in the system. Thus, the concentration of cholesterol in human erythrocyte membranes, which depends on factors such as age or health status, may play a key role in the toxic effects of BPA but not BPS.


Assuntos
Compostos Benzidrílicos , Membrana Eritrocítica , Colesterol , Humanos , Fenóis , Esfingomielinas
2.
Analyst ; 144(22): 6561-6569, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31576836

RESUMO

This paper describes how tunicamycin (Tu), the most widely used pharmacological agent for inducing endoplasmic reticulum (ER) stress, interacts with endothelial cells. Our results show that tunicamycin enters the cells and accumulates within the ER area. ER stress takes place when improperly folded or damaged proteins begin to accumulate; however, spectroscopic markers of these changes have not been identified as yet. In this work, Raman spectroscopy and scanning electron microscopy imaging of individual endothelial cells treated with Tu were performed. The changes in the biochemical composition of endothelial cells induced by Tu attributed to ER stress were studied in detail. A main feature of the Tu impact on the cells was a decrease of the phospholipid content in the area of ER, and the most abundant lipid with phosphorus groups found there, was identified as sphingomyelin.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Tunicamicina/farmacologia , Linhagem Celular , Análise por Conglomerados , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Análise de Componente Principal , Análise Espectral Raman/métodos , Esfingomielinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA