RESUMO
Although combinatorial biosynthesis can dramatically expand the chemical structures of bioactive natural products to identify molecules with improved characteristics, progress in this direction has been hampered by the difficulty in isolating and characterizing the numerous produced compounds. This challenge could be overcome with improved designs that enable the analysis of the bioactivity of the produced metabolites ahead of the time-consuming isolation procedures. Herein, we showcase a structure-agnostic bioactivity-driven combinatorial biosynthesis workflow that introduces bioactivity assessment as a selection-driving force to guide iterative combinatorial biosynthesis rounds towards enzyme combinations with increasing bioactivity. We apply this approach to produce triterpenoids with potent bioactivity against PTP1B, a promising molecular target for diabetes and cancer treatment. We demonstrate that the bioactivity-guided workflow can expedite the combinatorial process by enabling the narrowing down of more than 1000 possible combinations to only five highly potent candidates. By focusing the isolation and structural elucidation effort on only these five strains, we reveal 20 structurally diverse triterpenoids, including four new compounds and a novel triterpenoid-anthranilic acid hybrid, as potent PTP1B inhibitors. This workflow expedites hit identification by combinatorial biosynthesis and is applicable to many other types of bioactive natural products, therefore providing a strategy for accelerated drug discovery.
RESUMO
Celastrol, a triterpenoid found in the root of the traditional medicinal plant Tripterygium wilfordii, is a potent anti-inflammatory and antiobesity agent. However, pharmacological exploitation of celastrol has been hindered by the limited accessibility of plant material, the co-existence of other toxic compounds in the same plant tissue, and the lack of an efficient chemical synthesis method. In this review, we highlight recent progress in elucidating celastrol biosynthesis and discuss how this knowledge can facilitate its scalable bioproduction using cell factories and its further development as an antiobesity and anti-inflammatory drug.
Assuntos
Fármacos Antiobesidade , Triterpenos Pentacíclicos , Triterpenos , Triterpenos/metabolismo , Tripterygium/metabolismo , Biotecnologia/métodosRESUMO
Obesity is a major health risk still lacking effective pharmacological treatment. A potent anti-obesity agent, celastrol, has been identified in the roots of Tripterygium wilfordii. However, an efficient synthetic method is required to better explore its biological utility. Here we elucidate the 11 missing steps for the celastrol biosynthetic route to enable its de novo biosynthesis in yeast. First, we reveal the cytochrome P450 enzymes that catalyse the four oxidation steps that produce the key intermediate celastrogenic acid. Subsequently, we show that non-enzymatic decarboxylation-triggered activation of celastrogenic acid leads to a cascade of tandem catechol oxidation-driven double-bond extension events that generate the characteristic quinone methide moiety of celastrol. Using this acquired knowledge, we have developed a method for producing celastrol starting from table sugar. This work highlights the effectiveness of combining plant biochemistry with metabolic engineering and chemistry for the scalable synthesis of complex specialized metabolites.
Assuntos
Fármacos Antiobesidade , Triterpenos , Triterpenos/química , Triterpenos/metabolismo , Triterpenos/farmacologia , Fármacos Antiobesidade/farmacologia , Triterpenos Pentacíclicos , Sistema Enzimático do Citocromo P-450RESUMO
Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.
Assuntos
Carbono , Terpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Biologia Sintética , Terpenos/metabolismoRESUMO
Eukaryotic cells use G-protein coupled receptors to sense diverse signals, ranging from chemical compounds to light. Here, we exploit the remarkable sensing capacity of G-protein coupled receptors to construct yeast-based biosensors for real-life applications. To establish proof-of-concept, we focus on cannabinoids because of their neuromodulatory and immunomodulatory activities. We construct a CB2 receptor-based biosensor, optimize it to achieve high sensitivity and dynamic range, and prove its effectiveness in three applications of increasing difficulty. First, we screen a compound library to discover agonists and antagonists. Second, we analyze 54 plants to discover a new phytocannabinoid, dugesialactone. Finally, we develop a robust portable device, analyze body-fluid samples, and confidently detect designer drugs like JWH-018. These examples demonstrate the potential of yeast-based biosensors to enable diverse applications that can be implemented by non-specialists. Taking advantage of the extensive sensing repertoire of G-protein coupled receptors, this technology can be extended to detect numerous compounds.
Assuntos
Técnicas Biossensoriais , Canabinoides , Biotecnologia , Agonistas de Receptores de Canabinoides , Biblioteca Gênica , Saccharomyces cerevisiaeRESUMO
Pieris rapae and Phyllotreta nemorum are Brassicaceae specialists, but do not feed on Iberis amara spp. that contain cucurbitacins. The cucurbitacins are highly oxygenated triterpenoid, occurring widespread in cucurbitaceous species and in a few other plant families. Using de novo assembled transcriptomics from I. amara, gene co-expression analysis and comparative genomics, we unraveled the evolutionary origin of the insect deterrent cucurbitacins in I. amara. Phylogenetic analysis of five oxidosqualene cyclases and heterologous expression allowed us to identify the first committed enzyme in cucurbitacin biosynthesis in I. amara, cucurbitadienol synthase (IaCPQ). In addition, two species-specific cytochrome P450s (CYP708A16 and CYP708A15) were identified that catalyze the unique C16 and C22 hydroxylation of the cucurbitadienol backbone, enzymatic steps that have not been reported before. Furthermore, the draft genome assembly of I. amara showed that the IaCPQ was localized to the same scaffold together with CYP708A15 but spanning over 100 kb, this contrasts with the highly organized cucurbitacin gene cluster in the cucurbits. These results reveal that cucurbitacin biosynthesis has evolved convergently via different biosynthetic routes in different families rather than through divergence from an ancestral pathway. This study thus provides new insight into the mechanism of recurrent evolution and diversification of a plant defensive chemical.
Assuntos
Brassicaceae , Besouros , Triterpenos , Animais , Brassicaceae/genética , Besouros/genética , Cucurbitacinas , Filogenia , Triterpenos/metabolismoRESUMO
BACKGROUND: Celastrol is a promising anti-obesity agent that acts as a sensitizer of the protein hormone leptin. Despite its potent activity, a sustainable source of celastrol and celastrol derivatives for further pharmacological studies is lacking. RESULTS: To elucidate the celastrol biosynthetic pathway and reconstruct it in Saccharomyces cerevisiae, we mined a root-transcriptome of Tripterygium wilfordii and identified four oxidosqualene cyclases and 49 cytochrome P450s as candidates to be involved in the early steps of celastrol biosynthesis. Using functional screening of the candidate genes in Nicotiana benthamiana, TwOSC4 was characterized as a novel oxidosqualene cyclase that produces friedelin, the presumed triterpenoid backbone of celastrol. In addition, three P450s (CYP712K1, CYP712K2, and CYP712K3) that act downstream of TwOSC4 were found to effectively oxidize friedelin and form the likely celastrol biosynthesis intermediates 29-hydroxy-friedelin and polpunonic acid. To facilitate production of friedelin, the yeast strain AM254 was constructed by deleting UBC7, which afforded a fivefold increase in friedelin titer. This platform was further expanded with CYP712K1 to produce polpunonic acid and a method for the facile extraction of products from the yeast culture medium, resulting in polpunonic acid titers of 1.4 mg/L. CONCLUSION: Our study elucidates the early steps of celastrol biosynthesis and paves the way for future biotechnological production of this pharmacologically promising compound in engineered yeast strains.
Assuntos
Fármacos Antiobesidade/metabolismo , Biotecnologia/métodos , Nicotiana/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/genética , Terpenos/metabolismoRESUMO
INTRODUCTION: Triterpene saponins are important bioactive plant natural products found in many plant families including the Leguminosae. OBJECTIVES: We characterize two Medicago truncatula cytochrome P450 enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in vitro and in planta evidence. METHODS: UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with significant differential saponin content in the root and/or aerial tissues were selected, and correlated gene expression profiling was performed. RESULTS: Correlation analyses between gene expression and saponin accumulation revealed high correlations between saponin content with gene expression of ß-amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene silencing in M. truncatula hairy roots, which revealed a significant reduction of 2ß-hydroxylated sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed significant increases of oleanolic acid, 2ß-hydroxyoleanolic acid, hederagenin and total saponin levels. CONCLUSIONS: The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase and MtCYP72A67 is a 2ß-hydroxylase, both of which function during the early steps of triterpene-oleanate sapogenin biosynthesis.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sapogeninas/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus's geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.
RESUMO
Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and agronomic agents. Their biosynthesis is carried out through complicated, branched pathways by multiple enzyme types that include oxidosqualene cyclases, cytochrome P450s, and UDP-glycosyltransferases. Given that the number of characterized triterpene biosynthesis enzymes has been growing fast recently, the need for a database specifically focusing on triterpene enzymology became eminent. Here, we present the TriForC database (http://bioinformatics.psb.ugent.be/triforc/), encompassing a comprehensive catalogue of triterpene biosynthesis enzymes. This highly interlinked database serves as a user-friendly access point to versatile data sets of enzyme and compound features, enabling the scanning of a complete catalogue of experimentally validated triterpene enzymes, their substrates and products, as well as the pathways they constitute in various plant species. The database can be accessed by direct browsing or through convenient search tools including keyword, BLAST, plant species and substructure options. This database will facilitate gene mining and creating genetic toolboxes for triterpene synthetic biology.
Assuntos
Bases de Dados Factuais , Plantas/metabolismo , Triterpenos/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Enzimas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Ferramenta de Busca , Especificidade por Substrato , Biologia de Sistemas , Triterpenos/químicaRESUMO
Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.
Assuntos
Algoritmos , Avena , Comovirus , Descoberta de Drogas/métodos , Genoma de Planta , Genoma Viral , Nicotiana , Biologia Sintética/métodos , Triterpenos/metabolismo , Avena/enzimologia , Avena/genética , Comovirus/enzimologia , Comovirus/genética , Nicotiana/enzimologia , Nicotiana/genéticaRESUMO
Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Biodiversidade , Sistema Enzimático do Citocromo P-450/genética , Filogenia , Proteínas de Plantas/genéticaRESUMO
Saponins are a structurally diverse family of triterpenes that are widely found as main constituents in many traditional plant-based medicines and often have bioactivities of industrial interest. The heterologous production of triterpene saponins in microbes remains challenging and only limited successful pathway engineering endeavors have been reported. To improve the production capacities of a Saccharomyces cerevisiae saponin production platform, we assessed the effects of several hitherto unexplored gene knockout targets on the heterologous production of triterpenoids. Here, we show that the disruption of the phosphatidic acid phosphatase-encoding PAH1 through CRISPR/Cas9 results in a dramatic expansion of the endoplasmic reticulum (ER), which stimulated the production of recombinant triterpene biosynthesis enzymes and ultimately boosted triterpenoid and triterpene saponin accumulation. Compared to the wild-type starter strain, accumulation of the oleanane-type sapogenin ß-amyrin, of its oxidized derivative medicagenic acid, and its glucosylated version medicagenic-28-O-glucoside was respectively increased by eight-, six- and 16-fold in the pah1 strain. A positive effect of pah1 could also be observed for the production of other terpenoids depending on ER-associated enzymes for their biosynthesis, such as the sesquiterpenoid artemisinic acid, which increased by twofold relative to the wild-type strain. Hence, this report demonstrates that pathway engineering in yeast through transforming the subcellular morphology rather than altering metabolic fluxes is a powerful strategy to increase yields of bioactive plant-derived products in heterologous hosts.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Retículo Endoplasmático/fisiologia , Engenharia Metabólica/métodos , Fosfatidato Fosfatase/genética , Saccharomyces cerevisiae/fisiologia , Saponinas/biossíntese , Vias Biossintéticas/genética , Edição de Genes/métodos , Melhoramento Genético/métodos , Redes e Vias Metabólicas/genética , Proteínas de Saccharomyces cerevisiae , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Regulação para Cima/fisiologiaRESUMO
Monoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1). Here, we describe the identification and characterisation of BIS2, a jasmonate (JA)-responsive bHLH TF expressed preferentially in internal phloem-associated parenchyma cells, which transactivates promoters of iridoid biosynthesis genes and can homodimerise or form heterodimers with BIS1. Stable overexpression of BIS2 in C. roseus suspension cells and transient ectopic expression of BIS2 in C. roseus petal limbs resulted in increased transcript accumulation of methylerythritol-4-phosphate and iridoid pathway genes, but not of other MIA genes or triterpenoid genes. Transcript profiling also indicated that BIS2 expression is part of an amplification loop, as it is induced by overexpression of either BIS1 or BIS2. Accordingly, silencing of BIS2 in C. roseus suspension cells completely abolished the JA-induced upregulation of the iridoid pathway genes and subsequent MIA accumulation, despite the presence of induced BIS1, indicating that BIS2 is essential for MIA production in C. roseus.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Medicinais/genéticaRESUMO
Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/citologia , Catharanthus/genética , Células Cultivadas , Genes de Plantas , Dados de Sequência Molecular , Transcriptoma , Regulação para CimaRESUMO
Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, including the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5ß-reductase (P5ßR) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5ßR genes. Characterization of recombinant CrP5ßR proteins demonstrates that all but CrP5ßR3 can reduce progesterone and thus can be classified as P5ßRs. Three of them, namely CrP5ßR1, CrP5ßR2, and CrP5ßR4, can also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5ßR5) in secoiridoid synthesis. In-depth functional analysis by subcellular protein localization, gene expression analysis, in situ hybridization, and virus-induced gene silencing indicate that besides IS, CrP5ßR4 may also participate in secoiridoid biosynthesis. We cloned a set of P5ßR genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that IS activity is intrinsic to angiosperm P5ßR proteins and has evolved early during evolution.
Assuntos
Catharanthus/enzimologia , Proteínas de Plantas/metabolismo , Progesterona Redutase/metabolismo , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Iridoides/metabolismo , Dados de Sequência MolecularRESUMO
Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, among which the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5ß-reductase (P5ßR) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5ßR genes. Characterisation of recombinant CrP5ßR proteins demonstrates that all but CrP5ßR3 can reduce progesterone, and thus can be classified as P5ßRs. Three of them, namely CrP5ßR1, CrP5ßR2 and CrP5ßR4, could also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5ßR5) in secoiridoid synthesis. In depth functional analysis by subcellular protein localisation, gene expression analysis, in situ hybridisation and virus-induced gene silencing, indicates that besides IS, CrP5ßR4 may also participate in secoiridoid biosynthesis. Finally, we cloned a set of P5ßR genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that 'IS activity' is intrinsic to angiosperm P5ßR proteins and has evolved early during evolution.
RESUMO
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.
Assuntos
Catharanthus/metabolismo , Iridoides/metabolismo , Catharanthus/genética , Genes de Plantas , Dados de Sequência Molecular , Nicotiana/genéticaRESUMO
Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed.
Assuntos
Proteínas de Cloroplastos/biossíntese , Citosol/enzimologia , Lippia/enzimologia , Monoéster Fosfórico Hidrolases/biossíntese , Plastídeos/enzimologia , Valeriana/enzimologia , Monoterpenos Acíclicos , Proteínas de Cloroplastos/genética , Lippia/genética , Monoéster Fosfórico Hidrolases/genética , Plastídeos/genética , Especificidade da Espécie , Terpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Valeriana/genéticaRESUMO
Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-length CrGES was over-expressed in Escherichia coli and the purified recombinant protein catalyzed the conversion of GPP into geraniol with a K(m) value of 58.5 µM for GPP. In vivo CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry confirmed the excretion of geraniol into the growth medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant organs, RNA in situ hybridization showed specific labeling of CrGES transcripts in the internal phloem associated parenchyma as observed for other characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES transcript levels was observed. This observation coupled with the tissue-specific expression and the subcellular compartmentalization support the idea that CrGES initiates the monoterpenoid branch of the MIA biosynthetic pathway.