Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
2.
J Microbiol Immunol Infect ; 57(3): 457-469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584042

RESUMO

INTRODUCTION: Aim of the study was the molecular characterization of 21 ceftazidime/avibactam resistant (CZA-R) Klebsiella pneumoniae strains, collected in the period October 2021-March 2022 from an Intensive Care COVID Unit in a Northern Italian Hospital. METHODS: After growth on selective/chromogenic culture media and susceptibility tests assessment, resistance genes content was ascertained for all the isolates by the HybriSpot 12 multiplexing, PCR and Whole-Genome Sequencing (WGS). Clonality was assessed by PFGE and MLST according to the Pasteur scheme. A SNPs-based phylogenetic tree was obtained comparing representative isolates and global genomes. The blaKPC gene horizontal transmission was evaluated by conjugation experiments. blaKPC-166 was cloned in a pCR2.1 vector and transformed in chemically competent TOP10 cells. RESULTS: Sixteen inpatients resulted positive for colonization and/or infection by KPC-producing K. pneumoniae (KPC-Kp) strains. The 21 CZA-R KPC-Kp isolates obtained showed MDR phenotype; susceptibility to meropenem was always retained. All the CZA-R KPC-Kp presented a novel blaKPC variant, named blaKPC-166, showing a single nucleotide substitution (T811C) compared to the blaKPC-94; but related to blaKPC-2. TWO DIFFERENT PULSOTYPES WERE DETECTED: A in 18/21 and B in 1/21 cases, two strains from the same patient being untypable by PFGE. Interestingly, the outbreak was sustained by the high-risk clone ST307, although the ST22, ST6342, ST6418 and ST6811 have also been identified and associated to KPC-166. Worryingly, blaKPC-166 could be transferred horizontally and, after cloning, it conferred resistance to CZA. DISCUSSION: This novel variant confers CZA-resistance and carbapenems susceptibility restoration. As KPC-166 was found expressed by multiple Kp clones, greater efforts should be made to prevent the further dissemination of such strains in Italian clinical settings.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Surtos de Doenças , Combinação de Medicamentos , Unidades de Terapia Intensiva , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Itália/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/microbiologia , Filogenia , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , Masculino , Tipagem de Sequências Multilocus , Feminino
3.
Sci Rep ; 14(1): 6220, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486043

RESUMO

Enterobacter asburiae, member of the Enterobacter cloacae complex (ECC) group, shows an increasing clinical relevance being responsible for infections like pneumonia, urinary tract infections and septicemia. The aim of the present study was the investigation of the genomic features of two XDR E. asburiae ST229 clinical strains co-carrying blaNDM-1 and blaVIM-1 determinants, collected in October 2021 and in June 2022, respectively. Two E. asburiae strains were collected from rectal swabs of as many patients admitted to the cardiopulmonary intensive care unit of Fondazione I.R.C.C.S. "Policlinico San Matteo" in Pavia, Italy. Based on the antibiotic susceptibility profile results, both isolates showed an XDR phenotype, retaining susceptibility only to fluoroquinolones. Both isolates shared identical resistome, virulome, plasmid content, and belonged to ST229, a rarely reported sequence type. They co-harbored blaNDM-1 and blaVIM-1 genes, that resulted located on transferable plasmids by conjugation and transformation. Moreover, both strains differed in 24 SNPs and showed genetic relatedness with E. asburiae ST709 and ST27. We described the first case of ST229 E. asburiae co-harboring blaNDM-1 and blaVIM-1 in Italy. This study points out the emergence of carbapenemases in low-risk pathogens, representing a novel challenge for public health, that should include such types of strains in dedicated surveillance programs. Antimicrobial susceptibility testing was carried out using Thermo Scientific™ Sensititre™ Gram Negative MIC Plates DKMGN. Both strains underwent whole-genome sequencing (WGS) using Illumina Miseq platform. Resistome, plasmidome, virulome, MLST, plasmid MLST and a SNPs-based phylogenetic tree were in silico determined.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterobacter , beta-Lactamases , Humanos , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Filogenia
4.
Euro Surveill ; 29(8)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390649

RESUMO

The dissemination of carbapenemase-producing Escherichia coli, although still at low level, should be continuously monitored. OXA-244 is emerging in Europe, mainly in E. coli. In Italy, this carbapenemase was reported from an environmental river sample in 2019. We report clinical isolates of OXA-244-producing ST131 E. coli in four patients admitted to an acute care hospital in Pavia, Italy. The association of this difficult-to-detect determinant with a globally circulating high-risk clone, ST131 E. coli, is of clinical relevance.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Escherichia coli , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/diagnóstico , beta-Lactamases/genética , Itália/epidemiologia , Europa (Continente) , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Microb Drug Resist ; 29(10): 477-484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37389822

RESUMO

In 2022, we undertook a point prevalence screening study for Enterobacterales with extended-spectrum ß-lactamases (ESBLs), high-level AmpC cephalosporinases and carbapenemases, and also methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) in a long-term care facility (LTCF) and the associated acute-care hospital Geriatrics unit in Bolzano, Northern Italy. Urine samples and rectal, inguinal, oropharyngeal, and nasal swabs were plated on selective agar plates. Metadata of the patients, including demographic data, were collected, and risk factors for colonization were determined. ESBL, AmpC, carbapenemase, and quinolone resistance genes were investigated by the HybriSpot 12 PCR AUTO System. The following colonization percentages by multidrug-resistant (MDR) bacteria have been found in LTCF residents: all MDR organisms, 59.5%; ESBL producers, 46.0% (mainly CTX-M-type enzymes); carbapenemase producers, 1.1% (one Klebsiella pneumoniae with KPC-type); MRSA, 4.5%; VRE, 6.7%. Colonization by MDR bacteria was 18.9% for LTCF staff and 45.0% for Geriatrics unit patients. Peripheral vascular disease, the presence of any medical device, cancer, and a Katz Index of 0 were significant risk factors for colonization of LTCF residents by MDR bacteria in univariate and/or multivariate regression analysis. To conclude, the ongoing widespread diffusion of MDR bacteria in the LTCF suggests that efforts should be strengthened on MDR screening, implementation of infection control strategies, and antibiotic stewardship programs targeting the unique aspects of LTCFs. ClinicalTrials.gov ID: 0530250-BZ Reg01 30/08/2022.

6.
Antibiotics (Basel) ; 11(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36358226

RESUMO

In the last few years, Acinetobacter baumannii has ranked as a number one priority due to its Multi Drug Resistant phenotype. The different metabolic states, such as the one adopted when growing as biofilm, help the bacterium to resist a wide variety of compounds, placing the discovery of new molecules able to counteract this pathogen as a topic of utmost importance. In this context, bacterial cell division machinery and the conserved protein FtsZ are considered very interesting cellular targets. The benzothiadiazole compound C109 is able to inhibit bacterial growth and to block FtsZ GTPase and polymerization activities in Burkholderia cenocepacia, Pseudomonas aeruginosa, and Staphylococcus aureus. In this work, the activity of C109 was tested against a panel of antibiotic sensitive and resistant A. baumannii strains. Its ability to inhibit biofilm formation was explored, together with its activity against the A. baumannii FtsZ purified protein. Our results indicated that C109 has good MIC values against A. baumannii clinical isolates. Moreover, its antibiofilm activity makes it an interesting alternative treatment, effective against diverse metabolic states. Finally, its activity was confirmed against A. baumannii FtsZ.

7.
Antibiotics (Basel) ; 11(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36010006

RESUMO

In the present study, the in vitro activity of the sulbactam-durlobactam (SUL-DUR) combination was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL-DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and 4 mg/L, respectively. Only eleven isolates were resistant to SUL-DUR with MIC values ranging from 8 to 128 mg/L. The SUL-DUR resistant A. baumannii exhibited several antimicrobial resistance genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6')-Ib3 and aac(6')-Ib-cr and mutations in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H were found in PBP3. Different determinants were also identified in these CRAb isolates, including adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of SUL-DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.

9.
Front Microbiol ; 13: 920319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756019

RESUMO

The study aimed to investigate (i) the occurrence of third-generation cephalosporins and/or carbapenems non-sensitive Enterobacterales in Pavia surface and groundwaters, (ii) their resistance determinants, and (iii) the clonal features of the most relevant strains. During May 13 and 14, 2019, n = 18 water samples from n = 12 sampling sites in the urban/peri-urban area of Pavia (Po Plain, Northern Italy) have been evaluated. At first, hydrochemical analysis and bacterial plate counts were carried out on all the water samples. One milliliter of each water sample was then screened on both MacConkey agar (MC) added with cefotaxime (1 mg/L; 2 mg/L) and MC plus meropenem (0.25 mg/L; 4 mg/L). Species identification and antimicrobial susceptibilities were assessed by MicroScan autoSCAN-4. Double Disk Synergy (DD) test, CT103XL microarray, acc(6')-Ib-cr, qnrS, blaCTX-M-/MOX-/VEB-/OXA-type genes targeted PCR and sequencing, Pulsed-Field Gel Electrophoresis (PFGE), MultiLocus Sequence Typing (MLST), and Whole-Genome Sequencing on selected strains were performed. A total of n = 30 isolates grown on ß-lactams enriched MC: Escherichia coli (n = 21; 70%), Klebsiella spp. (n = 5; 16.6%), Citrobacter freundii (n = 2; 6.7%), and Kluyvera intermedia (n = 2; 6.7%). All E. coli and K. pneumoniae were ESßL-producers by DD. The 66.6, 38.0, and 19.0% of E. coli were ciprofloxacin/levofloxacin, trimethoprim-sulfamethoxazole, and gentamicin resistant (EUCAST 2019 breakpoints), respectively. A blaCTX-M-type determinant was identified in E. coli (n = 20/21; 95.2%) and K. pneumoniae (n = 2/3; 66.7%). The remaining E. coli was blaVEB-1 and blaMOX-2 genes positive. The aac(6')-Ib-cr determinant was found in n = 7 E. coli and n = 1 K. pneumoniae, while qnrS was found in n = 1 E. coli and n = 2 K. pneumoniae. PFGE showed clonal heterogeneity among ESßL-E. coli. Two out of four E. coli detected as blaOXA-244-positive, belonged to the pandemic ST131. One XDR K. pneumoniae from a stream sample, detected as blaKPC-2 positive, resulted of ST258. The epidemiological impact of blaOXA-244 ST131 E. coli and blaKPC-2 ST258 K. pneumoniae presence in surface waters of an urban area in Northern Italy must not be underestimated.

10.
Sci Total Environ ; 839: 156074, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623509

RESUMO

Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Animais , Bacteriófagos/genética , Especificidade de Hospedeiro , Klebsiella , Esgotos
11.
Front Microbiol ; 13: 838383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432265

RESUMO

Antimicrobial resistance (AMR) represents an increasing issue worldwide, spreading not only in humans and farmed animals but also in wildlife. One of the most relevant problems is represented by Extended-Spectrum Beta-Lactamases (ESßLs) producing Escherichia coli because they are the cause of important infections in human. Wild boars (Sus scrofa) as a source of ESßLs attracted attention due to their increasing density and their habits that lead them to be at the human-livestock-wildlife interface. The aim of this study was to increase the knowledge about the ESßLs E. coli strains carried by wild boars living in a particularly high-density area of Northern Italy. The analysis of 60 animals allowed to isolate 16 ESßL-producing E. coli strains (prevalence 23.3%), which were characterised from a phenotypical and molecular point of view. The overall analysis revealed that the 16 isolates were all not only ESßL producers but also multidrug resistant and carried different types of plasmid replicons. The genome analysis performed on a subset of isolates confirmed the heterogeneity observed with pulsed-field gel electrophoresis (PFGE) and highlighted the presence of two pandemic sequence types, ST131 and ST10, with different collections of virulence factors. The genomic context of ESßL genes further evidenced that all of them were surrounded by transposons and insertion sequences, suggesting the possibility to exchange AMR genes. Overall, this study shows the worrying dissemination of ESßL-producing E. coli in wild boars in Northern Italy, suggesting the role of these animals as a spreader of AMR and their inclusion in surveillance programmes, to shed light on the "One Health" complex interactions.

13.
Emerg Microbes Infect ; 11(1): 1015-1023, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35259067

RESUMO

Bacteriophages are the most abundant organisms on Earth. As there are few effective treatment options against some pathogens, the interest in the bacteriophage control of multi-drug-resistant bacterial pathogens is escalating, especially for Klebsiella pneumoniae. This study aimed to develop a phage-based solution to the rising incidence of extensively drug-resistant clinical Klebsiella pneumoniae sequence type (ST16) infections starting from a set of phages recently characterized against this lineage. A phage-cocktail (Katrice-16) composed of eight lytic phages was characterized for potential use in humans. In vitro and in vivo broth inhibition and Galleria mellonella rescue assays were used to demonstrate the efficacy of this approach using a collection of 56 strains of K. pneumoniae ST16, with distinct genetic backgrounds that were collected from clinical infections from four disparate nations. Additionally, Katrice-16 anti-biofilm activity, synergism with meropenem, and activity in human body fluids were also assessed. Katrice-16 was highly active in vitro against our K. pneumoniae ST16 collection (AUC% median = 86.48%; Q1 = 83.8%; Q2 = 96.85%; Q3 = 98.85%). It additionally demonstrated excellent in vivo activity in G. mellonella rescue assays, even with larvae infected by isolates that exhibited moderate in vitro inhibition. We measured significant anti-biofilm activity over 12 h (p = .0113) and synergic activity with meropenem. In addition, we also demonstrate that Katrice-16 maintained high activity in human body fluids. Our results indicate that our cocktail will likely be an effective solution for human infections with this increasingly prevalent and often highly resistant bacterial clone.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Bacteriófagos/genética , Humanos , Incidência , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana
14.
Antibiotics (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34827247

RESUMO

BACKGROUND: Cefiderocol is a siderophore cephalosporin that exhibits antimicrobial activity against most multi-drug resistant Gram-negative bacteria, including Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. METHODS: A total of 20 multidrug-resistant A. baumannii strains were isolated from 2020 to 2021, molecularly characterized and tested to assess the in vitro antibacterial activity of cefiderocol. Thirteen strains were carbapenem-hydrolysing oxacillinase OXA-23-like producers, while seven were non-OXA-23-like producers. Minimum inhibitory concentrations (MICs) were determined by broth microdilution, considered as the gold standard method. Disk diffusion test was also carried out using iron-depleted CAMHB plates for cefiderocol. RESULTS: Cefiderocol MICs ranged from 0.5 to 1 mg/L for OXA-23-like non-producing A. baumannii strains and from 0.25 to >32 mg/L for OXA-23-like producers, using the broth microdilution method. Cefiderocol MIC90 was 8 mg/L. Diameter of inhibition zone of cefiderocol ranged from 18 to 25 mm for OXA-23-like non-producers and from 15 to 36 mm for OXA-23-like producers, using the diffusion disk method. A large variability and a low reproducibility were observed during the determination of diameter inhibition zone. Molecular characterization showed that all isolates presented the ISAba1 genetic element upstream the blaOXA-51. Among OXA-23-like non-producers, four were blaOXA-58 positive and two were negative for all the resistance determinants analyzed. CONCLUSIONS: Cefiderocol showed in vitro antimicrobial activity against both carbapenem-susceptible and non-susceptible A. baumannii strains, although some OXA-23-like producers were resistant. Further clinical studies are needed to consolidate the role of cefiderocol as an antibiotic against MDR A. baumannii.

15.
Antibiotics (Basel) ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827279

RESUMO

Metallo-ß-lactamases (MBLs) are among the most challenging bacterial enzymes to overcome. Aztreonam (ATM) is the only ß-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum ß-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new ß-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time-kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM-BLI combination. ATM-BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.

16.
Pathogens ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358036

RESUMO

Staphylococcus aureus infections represent a great concern due to their versatility and involvement in different types of diseases. The shortage of available clinical options, especially to treat multiresistant strains, makes the discovery of new effective compounds essential. Here we describe the activity of the previously described cell division inhibitor C109 against methicillin-sensitive and -resistant S. aureus strains. Antibiofilm activity was assessed using microtiter plates, confocal microscopy, and in an in vitro biofilm wound model. The ability of C109 to block FtsZ GTPase activity and polymerization was tested in vitro. Altogether, the results show that the FtsZ inhibitor C109 has activity against a wide range of S. aureus strains and support its use as an antistaphylococcal compound.

17.
Antibiotics (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203731

RESUMO

KPC-producing Escherichia coli (KPC-Ec) remains uncommon, being mainly reported as the cause of sporadic episodes of infection rather than outbreak events. Here we retrospectively describe the dynamics of a large hospital outbreak sustained by KPC-Ec, involving 106 patients and 25 hospital wards, during a six-month period. Twenty-nine representative KPC-Ec isolates (8/29 from rectal swabs; 21/29 from other clinical specimens) have been investigated by Whole-Genome Sequencing (WGS). Outbreak isolates showed a multidrug-resistant profile and harbored several resistance determinants, including blaCTX-M-27, aadA5, dfrA17, sulI, gyrA1AB and parC1aAB. Phylogenomic analysis identified the ST131 cluster 1 (23/29 isolates), H30Rx clade C, as responsible for the epidemic event. A further two KPC-Ec ST131 clusters were identified: cluster 2 (n = 2/29) and cluster 3 (n = 1/29). The remaining KPC-Ec resulted in ST978 (n = 2/29) and ST1193 (n = 1/29), and were blaKPC-3 associated. The KPC-Ec ST131 cluster 1, originated in a previous KPC-Kp endemic context probably by plasmid transfer, and showed a clonal dissemination strategy. Transmission of the blaKPC gene to the globally disseminated high-risk ST131 clone represents a serious cause of concern. Application of WGS in outbreak investigations could be useful to better understand the evolution of epidemic events in order to address infection control and contrast interventions, especially when high-risk epidemic clones are involved.

18.
Diagnostics (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418979

RESUMO

BACKGROUND: the co-production of carbapenemases and mcr-genes represents a worrisome event in the treatment of Enterobacteriaceae infections. The aim of the study was to characterize the genomic features of two clinical Enterobacter cloacae complex (ECC) isolates, co-producing VIM and MCR enzymes, in Italy. METHODS: species identification and antibiotic susceptibility profiling were performed using MALDI-TOF and broth microdilution methods, respectively. Transferability of the bla VIM- and mcr- type genes was verified through conjugation experiment. Extracted DNA was sequenced using long reads sequencing technology on the Sequel I platform (PacBio). RESULTS: the first isolate showed clinical resistance against ertapenem yet was colistin susceptible (EUCAST 2020 breakpoints). The mcr-9.2 gene was harbored on a conjugative IncHI2 plasmid, while the bla VIM-1 determinant was harbored on a conjugative IncN plasmid. The second isolate, resistant to both carbapenems and colistin, harbored: mcr-9 gene and its two component regulatory genes for increased expression on the chromosome, mcr-4.3 on non-conjugative (yet co-transferable) ColE plasmid, and bla VIM-1 on a non-conjugative IncA plasmid. CONCLUSIONS: to our knowledge, this is the first report of co-production of VIM and MCR in ECC isolates in Italy.

19.
Microorganisms ; 8(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806766

RESUMO

Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6')-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3')-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.

20.
Antimicrob Resist Infect Control ; 9(1): 106, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660605

RESUMO

Long-term care facilities (LTCFs) are an important reservoir of multidrug-resistant organisms (MDROs). Colonization of LTCF residents by MDROs is generally higher in Italy compared to other European countries. The present review by the working group for the study of infections in LTCFs (GLISTer) of the Italian Association of Clinical Microbiologists (AMCLI) aims to propose criteria for a laboratory-based surveillance of MDROs in Italian LTCFs.We recommend the adhesion to three levels of laboratory-based MDROs surveillance in LTCFs: i) mandatory MDRO surveillance by cumulative retrospective analysis of antimicrobial susceptibility data, obtained as part of routine care of clinical specimens. ii) strongly recommended surveillance by active rectal swab cultures or molecular screening to determine colonization with carbapenemase-producing Enterobacterales, should a resident be proven infected. iii) voluntary surveillance by prospective MDRO surveys, mainly based on point prevalence colonization studies, allowing to determine the MDROs baseline prevalence in the facility.Laboratory-based surveillance of MDROs in LTCFs is aimed at providing useful epidemiological information to healthcare providers operating in the facility, but it is only effective if the collected data are used for infection prevention and control purposes, targeting the peculiar aspects of LTCFs.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/prevenção & controle , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Assistência de Longa Duração/organização & administração , Assistência de Longa Duração/normas , Infecções por Enterobacteriaceae/epidemiologia , Monitoramento Epidemiológico , Diretrizes para o Planejamento em Saúde , Humanos , Itália/epidemiologia , Casas de Saúde/estatística & dados numéricos , Prevalência , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA