Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083694

RESUMO

Spinal muscular atrophy (SMA) is a rare neuromuscular disease which may cause impairments in oro-facial musculature. Most of the individuals with SMA present bulbar signs such as flaccid dysarthria which mines their abilities to speak and, as consequence, their psychic balance. To support clinicians, recent work has demonstrated the feasibility of video-based techniques for assessing the oro-facial functions in patients with neurological disorders such as amyotrophic lateral sclerosis. However, no work has so far focused on automatic and quantitative monitoring of dysarthria in SMA. To overcome limitations this work's aim is to propose a cloud-based store-and-forward telemonitoring system for automatic and quantitative evaluation of oro-facial muscles in individuals with SMA. The system integrates a convolutional neural network (CNN) aimed at identifying the position of facial landmarks from video recordings acquired via a web application by an SMA patient.Clinical relevance- The proposed work is in the preliminary stage, but it represents the first step towards a better understanding of the bulbar-functions' evolution in patients with SMA.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Muscular Espinal , Humanos , Disartria/diagnóstico , Disartria/etiologia , Autocuidado , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/diagnóstico , Esclerose Lateral Amiotrófica/complicações , Doenças Raras
2.
Comput Methods Programs Biomed ; 242: 107840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832429

RESUMO

BACKGROUND AND OBJECTIVES: Timely identification of dysarthria progression in patients with bulbar-onset amyotrophic lateral sclerosis (ALS) is relevant to have a comprehensive assessment of the disease evolution. To this goal literature recognized the utmost importance of the assessment of the number of syllables uttered by a subject during the oral diadochokinesis (DDK) test. METHODS: To support clinicians, this work proposes a remote deep learning-based system, which consists (i) of a web application to acquire audio tracks of bulbar-onset ALS patients and healthy control subjects while performing the oral DDK test (i.e., repeating the /pa/, /pa-ta-ka/ and /oo-ee/ syllables) and (ii) a DDK-AID network designed to process the acquired audio signals which have different duration and to output the number of per-task syllables repeated by the subject. RESULTS: The DDK-AID network overcomes the comparative method achieving a mean Accuracy of 90.23 in counting syllables repeated by the eleven bulbar-onset ALS-patients while performing the oral DDK test. CONCLUSIONS: The proposed remote monitoring system, in the light of the achieved performance, represents an important step towards the implementation of self-service telemedicine systems which may ensure customised care plans.


Assuntos
Esclerose Lateral Amiotrófica , Aprendizado Profundo , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Software
3.
Comput Biol Med ; 163: 107194, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421736

RESUMO

BACKGROUND AND OBJECTIVES: Patients suffering from neurological diseases may develop dysarthria, a motor speech disorder affecting the execution of speech. Close and quantitative monitoring of dysarthria evolution is crucial for enabling clinicians to promptly implement patients' management strategies and maximizing effectiveness and efficiency of communication functions in term of restoring, compensating or adjusting. In the clinical assessment of orofacial structures and functions, at rest condition or during speech and non-speech movements, a qualitative evaluation is usually performed, throughout visual observation. METHODS: To overcome limitations posed by qualitative assessments, this work presents a store-and-forward self-service telemonitoring system that integrates, within its cloud architecture, a convolutional neural network (CNN) for analyzing video recordings acquired by individuals with dysarthria. This architecture - called facial landmark Mask RCNN - aims at locating facial landmarks as a prior for assessing the orofacial functions related to speech and examining dysarthria evolution in neurological diseases. RESULTS: When tested on the Toronto NeuroFace dataset, a publicly available annotated dataset of video recordings from patients with amyotrophic lateral sclerosis (ALS) and stroke, the proposed CNN achieved a normalized mean error equal to 1.79 on localizing the facial landmarks. We also tested our system in a real-life scenario on 11 bulbar-onset ALS subjects, obtaining promising outcomes in terms of facial landmark position estimation. DISCUSSION AND CONCLUSIONS: This preliminary study represents a relevant step towards the use of remote tools to support clinicians in monitoring the evolution of dysarthria.


Assuntos
Esclerose Lateral Amiotrófica , Disartria , Humanos , Disartria/diagnóstico , Computação em Nuvem , Fala , Gravação em Vídeo
4.
Med Biol Eng Comput ; 61(2): 387-397, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36441288

RESUMO

Early diagnosis of neurodevelopmental impairments in preterm infants is currently based on the visual analysis of newborns' motion patterns by trained operators. To help automatize this time-consuming and qualitative procedure, we propose a sustainable deep-learning algorithm for accurate limb-pose estimation from depth images. The algorithm consists of a convolutional neural network (TwinEDA) relying on architectural blocks that require limited computation while ensuring high performance in prediction. To ascertain its low computational costs and assess its application in on-the-edge computing, TwinEDA was additionally deployed on a cost-effective single-board computer. The network was validated on a dataset of 27,000 depth video frames collected during the actual clinical practice from 27 preterm infants. When compared to the main state-of-the-art competitor, TwinEDA is twice as fast to predict a single depth frame and four times as light in terms of memory, while performing similarly in terms of Dice similarity coefficient (0.88). This result suggests that the pursuit of efficiency does not imply the detriment of performance. This work is among the first to propose an automatic and sustainable limb-position estimation approach for preterm infants. This represents a significant step towards the development of broadly accessible clinical monitoring applications.


Assuntos
Aprendizado Profundo , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Redes Neurais de Computação , Algoritmos
5.
Comput Methods Programs Biomed ; 225: 107057, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952537

RESUMO

BACKGROUND AND OBJECTIVES: The use of deep learning for preterm infant's movement monitoring has the potential to support clinicians in early recognizing motor and behavioural disorders. The development of deep learning algorithms is, however, hampered by the lack of publicly available annotated datasets. METHODS: To mitigate the issue, this paper presents a Generative Adversarial Network-based framework to generate images of preterm infants in a given pose. The framework consists of a bibranch encoder and a conditional Generative Adversarial Network, to generate a rough image and a refined version of it, respectively. RESULTS: Evaluation was performed on the Moving INfants In RGB-D dataset which has 12.000 depth frames from 12 preterm infants. A low Fréchet inception distance (142.9) and an inception score (2.8) close to that of real-image distribution (2.6) are obtained. The results achieved show the potentiality of the framework in generating realistic depth images of preterm infants in a given pose. CONCLUSIONS: Pursuing research on the generation of new data may enable researchers to propose increasingly advanced and effective deep learning-based monitoring systems.


Assuntos
Processamento de Imagem Assistida por Computador , Recém-Nascido Prematuro , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Movimento
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3013-3016, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891878

RESUMO

Preterm infants' spontaneous motility is a valuable diagnostic and prognostic index of motor and cognitive impairments. Despite being recognized as crucial, preterm infant's movement assessment is mostly based on clinicians' visual inspection. The aim of this work is to present a 2D dense convolutional neural network (denseCNN) to detect preterm infant's joints in depth images acquired in neonatal intensive care units. The denseCNN allows to improve the performance of our previous model in the detection of joints and joint connections, reaching a median recall value equal to 0.839. With a view to monitor preterm infants in a scenario where computational resources are scarce, we tested the architecture on a mid-range laptop. The prediction occurs in real-time (0.014 s per image), opening up the possibility of integrating such monitoring system in a domestic environment.


Assuntos
Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Humanos , Lactente , Recém-Nascido , Redes Neurais de Computação
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3021-3024, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891880

RESUMO

Computer-assisted tools for preterm infants' movement monitoring in neonatal intensive care unit (NICU) could support clinicians in highlighting preterm-birth complications. With such a view, in this work we propose a deep-learning framework for preterm infants' pose estimation from depth videos acquired in the actual clinical practice. The pipeline consists of two consecutive convolutional neural networks (CNNs). The first CNN (inherited from our previous work) acts to roughly predict joints and joint-connections position, while the second CNN (Asy-regression CNN) refines such predictions to trace the limb pose. Asy-regression relies on asymmetric convolutions to temporally optimize both the training and predictions phase. Compared to its counterpart without asymmetric convolutions, Asy-regression experiences a reduction in training and prediction time of 66% , while keeping the root mean square error, computed against manual pose annotation, merely unchanged. Research mostly works to develop highly accurate models, few efforts have been invested to make the training and deployment of such models time-effective. With a view to make these monitoring technologies sustainable, here we focused on the second aspect and addressed the problem of designing a framework as trade-off between reliability and efficiency.


Assuntos
Recém-Nascido Prematuro , Redes Neurais de Computação , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Reprodutibilidade dos Testes
8.
World J Surg ; 45(5): 1585-1594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33594578

RESUMO

BACKGROUND: The use of innovative methodologies, such as Surgical Data Science (SDS), based on artificial intelligence (AI) could prove to be useful for extracting knowledge from clinical data overcoming limitations inherent in medical registries analysis. The aim of the study is to verify if the application of an AI analysis to our database could develop a model able to predict cardiopulmonary complications in patients submitted to lung resection. METHODS: We retrospectively analyzed data of patients submitted to lobectomy, bilobectomy, segmentectomy and pneumonectomy (January 2006-December 2018). Fifty preoperative characteristics were used for predicting the occurrence of cardiopulmonary complications. The prediction model was developed by training and testing a machine learning (ML) algorithm (XGBOOST) able to deal with registries characterized by missing data. We calculated the receiver operating characteristic curve, true positive rate (TPR), positive predictive value (PPV) and accuracy of the model. RESULTS: We analyzed 1360 patients (lobectomy: 80.7%, segmentectomy: 11.9%, bilobectomy 3.7%, pneumonectomy: 3.7%) and 23.3% of them experienced cardiopulmonary complications. XGBOOST algorithm generated a model able to predict complications with an area under the curve of 0.75, a TPR of 0.76, a PPV of 0.68. The model's accuracy was 0.70. The algorithm included all the variables in the model regardless of their completeness. CONCLUSIONS: Using SDS principles in thoracic surgery for the first time, we developed an ML model able to predict cardiopulmonary complications after lung resection based on 50 patient characteristics. The prediction was also possible even in the case of those patients for whom we had incomplete data. This model could improve the process of counseling and the perioperative management of lung resection candidates.


Assuntos
Cirurgia Torácica , Inteligência Artificial , Ciência de Dados , Humanos , Aprendizado de Máquina , Estudos Retrospectivos
9.
Measurement (Lond) ; 184: 109946, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36540410

RESUMO

This study defines a methodology to measure physical activity (PA) in ageing people working in a social garden while maintaining social distancing (SD) during COVID-19 pandemic. A real-time location system (RTLS) with embedded inertial measurement unit (IMU) sensors is used for measuring PA and SD. The position of each person is tracked to assess their SD, finding that the RTLS/IMU can measure the time in which interpersonal distance is not kept with a maximum uncertainty of 1.54 min, which compared to the 15-min. limit suggested to reduce risk of transmission at less than 1.5 m, proves the feasibility of the measurement. The data collected by the accelerometers of the IMU sensors are filtered using discrete wavelet transform and used to measure the PA in ageing people with an uncertainty-based thresholding method. PA and SD time measurements were demonstrated exploiting the experimental test in a pilot case with real users.

10.
J Intensive Med ; 1(2): 110-116, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36785563

RESUMO

Background: Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction models as they excel in the analysis of complex signals in data-rich environments such as critical care. Methods: We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary outcome the increase or decrease in patients' Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU admission. The model was iteratively cross-validated in different subsets of the study cohort. Results: The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher than that for the logistic regression model (0.86 vs. 0.69, P < 0.01 [paired t-test with 95% confidence interval]). Conclusions: The XGBoost model predicted the change in SOFA score in critically ill COVID-19 patients admitted to the ICU and can guide clinical decision support systems (CDSSs) aimed at optimizing available resources.

11.
IEEE J Transl Eng Health Med ; 8: 3000112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150095

RESUMO

Objective Decision support systems (DSS) have been developed and promoted for their potential to improve quality of health care. However, there is a lack of common clinical strategy and a poor management of clinical resources and erroneous implementation of preventive medicine. Methods To overcome this problem, this work proposed an integrated system that relies on the creation and sharing of a database extracted from GPs' Electronic Health Records (EHRs) within the Netmedica Italian (NMI) cloud infrastructure. Although the proposed system is a pilot application specifically tailored for improving the chronic Type 2 Diabetes (T2D) care it could be easily targeted to effectively manage different chronic-diseases. The proposed DSS is based on EHR structure used by GPs in their daily activities following the most updated guidelines in data protection and sharing. The DSS is equipped with a Machine Learning (ML) method for analyzing the shared EHRs and thus tackling the high variability of EHRs. A novel set of T2D care-quality indicators are used specifically to determine the economic incentives and the T2D features are presented as predictors of the proposed ML approach. Results The EHRs from 41237 T2D patients were analyzed. No additional data collection, with respect to the standard clinical practice, was required. The DSS exhibited competitive performance (up to an overall accuracy of 98%±2% and macro-recall of 96%±1%) for classifying chronic care quality across the different follow-up phases. The chronic care quality model brought to a significant increase (up to 12%) of the T2D patients without complications. For GPs who agreed to use the proposed system, there was an economic incentive. A further bonus was assigned when performance targets are achieved. Conclusions The quality care evaluation in a clinical use-case scenario demonstrated how the empowerment of the GPs through the use of the platform (integrating the proposed DSS), along with the economic incentives, may speed up the improvement of care.

12.
Data Brief ; 33: 106329, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083503

RESUMO

The database here described contains data relevant to preterm infants' movement acquired in neonatal intensive care units (NICUs). The data consists of 16 depth videos recorded during the actual clinical practice. Each video consists of 1000 frames (i.e., 100s). The dataset was acquired at the NICU of the Salesi Hospital, Ancona (Italy). Each frame was annotated with the limb-joint location. Twelve joints were annotated, i.e., left and right shoul- der, elbow, wrist, hip, knee and ankle. The database is freely accessible at http://doi.org/10.5281/zenodo.3891404. This dataset represents a unique resource for artificial intelligence researchers that want to develop algorithms to provide healthcare professionals working in NICUs with decision support. Hence, the babyPose dataset is the first annotated dataset of depth images relevant to preterm infants' movement analysis.

13.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962134

RESUMO

Background: Heartbeat detection is a crucial step in several clinical fields. Laser Doppler Vibrometer (LDV) is a promising non-contact measurement for heartbeat detection. The aim of this work is to assess whether machine learning can be used for detecting heartbeat from the carotid LDV signal. Methods: The performances of Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and K-Nearest Neighbor (KNN) were compared using the leave-one-subject-out cross-validation as the testing protocol in an LDV dataset collected from 28 subjects. The classification was conducted on LDV signal windows, which were labeled as beat, if containing a beat, or no-beat, otherwise. The labeling procedure was performed using electrocardiography as the gold standard. Results: For the beat class, the f1-score (f1) values were 0.93, 0.93, 0.95, 0.96 for RF, DT, KNN and SVM, respectively. No statistical differences were found between the classifiers. When testing the SVM on the full-length (10 min long) LDV signals, to simulate a real-world application, we achieved a median macro-f1 of 0.76. Conclusions: Using machine learning for heartbeat detection from carotid LDV signals showed encouraging results, representing a promising step in the field of contactless cardiovascular signal analysis.


Assuntos
Frequência Cardíaca , Aprendizado de Máquina , Máquina de Vetores de Suporte , Eletrocardiografia , Humanos , Lasers , Vibração
14.
IEEE Trans Biomed Eng ; 67(8): 2370-2380, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31870974

RESUMO

OBJECTIVE: Preterm infants' limb monitoring in neonatal intensive care units (NICUs) is of primary importance for assessing infants' health status and motor/cognitive development. Herein, we propose a new approach to preterm infants' limb pose estimation that features spatio-temporal information to detect and track limb joints from depth videos with high reliability. METHODS: Limb-pose estimation is performed using a deep-learning framework consisting of a detection and a regression convolutional neural network (CNN) for rough and precise joint localization, respectively. The CNNs are implemented to encode connectivity in the temporal direction through 3D convolution. Assessment of the proposed framework is performed through a comprehensive study with sixteen depth videos acquired in the actual clinical practice from sixteen preterm infants (the babyPose dataset). RESULTS: When applied to pose estimation, the median root mean square distance, computed among all limbs, between the estimated and the ground-truth pose was 9.06 pixels, overcoming approaches based on spatial features only (11.27 pixels). CONCLUSION: Results showed that the spatio-temporal features had a significant influence on the pose-estimation performance, especially in challenging cases (e.g., homogeneous image intensity). SIGNIFICANCE: This article significantly enhances the state of art in automatic assessment of preterm infants' health status by introducing the use of spatio-temporal features for limb detection and tracking, and by being the first study to use depth videos acquired in the actual clinical practice for limb-pose estimation. The babyPose dataset has been released as the first annotated dataset for infants' pose estimation.


Assuntos
Recém-Nascido Prematuro , Redes Neurais de Computação , Humanos , Recém-Nascido , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA