Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic Inj Prev ; : 1-12, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900933

RESUMO

OBJECTIVE: Injury outcomes for powered two- and three-wheeler (PTW) riders are influenced by the rider posture. To enable analysis of PTW rider accidents and development of protection systems, detailed whole-body posture data is needed. Therefore, the aim of this study is to fill this gap by providing collections of average male whole-body postures, including subpopulation variability, for different PTW types. This will enable future studies to explore the influence of PTW rider posture variation and to support safety system development. METHODS: 3D photometric measurements of 51 anatomical landmarks were recorded on 20 (50th percentile male) volunteers in their preferred riding postures across three PTW types (naked, scooter, and touring). Following an outlier removal process, a principal component analysis (PCA) was performed to calculate average postures and principal components (PCs), to describe the observed posture variation, for each PTW. The visualization of the PCs was facilitated through kinematic linkage representations, connecting anatomical landmarks and estimated joint centers to form segments and characteristic joint angles. RESULTS: The first seven PCs explained 80% of the variance in posture for each of the three PTWs. Across PTWs, these PCs frequently described combinations of postural features including variation in fore-aft seat positions, pelvic tilt, spinal curvature, head position, and extremity flexion-extension. Analysis revealed distinct differences in average postures across the three PTWs, on average, 10 ± 9° for the characteristic joint angles within a min-to-max range between the three PTWs. However, for all three PTWs, the variability between volunteers in characteristic joint angles on the same PTW were on average more than twice as large within a ± 2 SD range (26 ± 11°). CONCLUSIONS: The results suggest that PTW rider posture variation must be addressed by involving simultaneous adjustments of multiple body parts, as described by each of the first seven PCs, as a direct consequence of the human body interconnectedness. Furthermore, the study's findings challenge conventional assumptions that the relative distance between PTWs' handlebar, seat, and foot support predominantly influences rider postures. Instead, the research demonstrates that individual variability has a substantial influence on rider posture and should be considered in PTW safety development.

2.
J Tissue Eng Regen Med ; 13(2): 342-355, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30637991

RESUMO

We used additive manufacturing to fabricate 3D-printed polycaprolactone scaffolds of different geometry topologies and porosities. We present a comparative analysis of hyaline cartilage development from adipose-tissue-derived mesenchymal stem cells (ADMSCs) on three different, newly designed scaffold geometry patterns. The first scaffold design (MESO) was based on a rectilinear layer pattern. For the second pattern (RO45), we employed a 45° rotational layer loop. The design for the third scaffold (3DHC) was a three-dimensional honeycomb-like pattern with a hexagonal cellular distribution and small square shapes. We examined cell proliferation, colonization, and differentiation, in relation to the scaffold's structure, as well as to the mechanical properties of the final constructs. We gave emphasis on the scaffolds, both microarchitecture and macroarchitecture, for optimal and enhanced chondrogenic differentiation, as an important parameter, not well studied in the literature. Among the three patterns tested, RO45 was the most favourable for chondrogenic differentiation, whereas 3DHC better supported cell proliferation and scaffold penetration, exhibiting also the highest rate of increase onto the mechanical properties of the final construct. We conclude that by choosing the optimal scaffold architecture, the resulting properties of our cartilaginous constructs can better approximate those of the physiological cartilage.


Assuntos
Tecido Adiposo/metabolismo , Bioprótese , Cartilagem Hialina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais/química , Tecido Adiposo/citologia , Adulto , Feminino , Humanos , Cartilagem Hialina/citologia , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA