RESUMO
Metabarcoding using high throughput sequencing of amplicons of the 18S rRNA gene is one of the widely used methods for assessing the diversity of microeukaryotes in various ecosystems. We investigated the effectiveness of the V4 and V8-V9 regions of the 18S rRNA gene by comparing the results of metabarcoding microeukaryotic communities using the DADA2 (ASV), USEARCH-UNOISE3 (ZOTU), and USEARCH-UPARSE (OTU with 97% similarity) algorithms. Both regions showed similar levels of genetic variability and taxa identification accuracy. Richness for DADA2 datasets of both regions was lower than for UNOISE3 and UPARSE datasets, which is due to more accurate error correction in amplicons. Microeukaryotic communities (autotrophs and heterotrophs) structure identified using both regions showed a significant relationship with phytoplankton (autotrophs) communities structure based on microscopy in a seasonal freshwater sample series. The strongest relationship was found between the phytoplankton species and V8-V9 ASVs produced by DADA2.
Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/genética , RNA Ribossômico 18S/genética , Algoritmos , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Microorganisms exhibit seasonal succession governed by physicochemical factors and interspecies interactions, yet drivers of this process in different environments remain to be determined. We used high-throughput sequencing of 16S rRNA and 18S rRNA genes to study seasonal dynamics of bacterial and microeukaryotic communities at pelagic site of Lake Baikal from spring (under-ice, mixing) to autumn (direct stratification). The microbial community was subdivided into distinctive coherent clusters of operational taxonomic units (OTUs). Individual OTUs were consistently replaced during different seasonal events. The coherent clusters change their contribution to the microbial community depending on season. Changes of temperature, concentrations of silicon, and nitrates are the key factors affected the structure of microbial communities. Functional prediction revealed that some bacterial or eukaryotic taxa that switched with seasons had similar functional properties, which demonstrate their functional redundancy. We have also detected specific functional properties in different coherent clusters of bacteria or microeukaryotes, which can indicate their ability to adapt to seasonal changes of environment. Our results revealed a relationship between seasonal succession, coherency, and functional features of freshwater bacteria and microeukaryotes.
Assuntos
Lagos , Microbiota , Bactérias/genética , Lagos/microbiologia , RNA Ribossômico 16S/genética , Estações do AnoRESUMO
Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively. Non-metric multidimensional scaling (NMDS) revealed a relationship between the structure of phytoplankton and bacterial communities and temperature, location, and sampling year. Associations of bacteria with diatoms, green microalgae, chrysophyte, and cryptophyte were identified using microscopy. Cluster analysis revealed similar correlation patterns between phytoplankton abundance, number of attached bacteria, ratio of bacteria per phytoplankton cell and environmental parameters. Positive and negative correlations between different species of phytoplankton, heterotrophic bacteria and environmental parameters may indicate mutualistic or competitive relationships between microorganisms and their preferences to the environment.
Assuntos
Organismos Aquáticos/isolamento & purificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Lagos/parasitologia , Fitoplâncton/isolamento & purificação , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Bactérias/classificação , Bactérias/genética , Ecossistema , Lagos/química , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Estações do Ano , TemperaturaRESUMO
The original version of this article unfortunately contained mistakes in the legends of figures.
RESUMO
The pelagic zone of Lake Baikal is an ecological niche where phytoplankton bloom causes increasing microbial abundance in spring which plays a key role in carbon turnover in the freshwater lake. Co-occurrence patterns revealed among different microbes can be applied to predict interactions between the microbes and environmental conditions in the ecosystem. We used 454 pyrosequencing of 16S rRNA and 18S rRNA genes to study bacterial and microbial eukaryotic communities and their co-occurrence patterns at the pelagic zone of Lake Baikal during a spring phytoplankton bloom. We found that microbes within one domain mostly correlated positively with each other and are highly interconnected. The highly connected taxa in co-occurrence networks were operational taxonomic units (OTUs) of Actinobacteria, Bacteroidetes, Alphaproteobacteria, and autotrophic and unclassified Eukaryota which might be analogous to microbial keystone taxa. Constrained correspondence analysis revealed the relationships of bacterial and microbial eukaryotic communities with geographical location.
Assuntos
Bactérias/classificação , Eucariotos/classificação , Lagos/microbiologia , Microbiota , Fitoplâncton/crescimento & desenvolvimento , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Análise por Conglomerados , Ecossistema , Eucariotos/fisiologia , Água Doce , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Estações do AnoRESUMO
BACKGROUND: Interest in studies concerning the effect of organic carbon sources on the growth of diatoms is largely aimed at subsequent physiological changes occurring in their cells. There are no data on structural changes in the cytoplasm and their relationship with changes in the composition of fatty acids in the course of mixotrophic culturing of freshwater diatoms. To elucidate the role of lipids in the growth of diatom cells in autotrophic and mixotrophic cultures, it is necessary to obtain information on the distribution of fatty acids among intracellular compartments and on possible ultrastructural changes in the cells. RESULTS: In this study, the results demonstrated that Synedra acus cells cultured in the presence of 80 mM glycerol contained lipid bodies of increased size, while cells from cultures supplemented with 40 mM glucose accumulated polysaccharide (chrysolaminarin) granules. An increase in the relative amounts of palmitic and stearic acids was revealed at the exponential growth phase of S. acus in the medium with 80 mM glycerol, which was indicative of the accumulation of fatty acids contained in triacylglycerols. CONCLUSIONS: Synedra acus subsp. radians have an ability to proliferate in the presence of high concentrations of organic substances and their transport into cells is evidence for its high adaptation potential, which, along with other factors, accounts for the dominance of this diatom in the spring-summer plankton of the oligotrophic Lake Baikal.