Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402191, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370656

RESUMO

Despite targeting different coagulation cascade sites, all Food and Drug Administration-approved anticoagulants present an elevated risk of bleeding, including potentially life-threatening intracranial hemorrhage. Existing studies have not thoroughly investigated the efficacy and safety of sulfonate polymers in animal models and fully elucidate the precise mechanisms by which these polymers act. The activity and safety of sulfonated di- and triblock copolymers containing poly(sodium styrenesulfonate) (PSSS), poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS), poly(ethylene glycol) (PEG), poly(sodium methacrylate) (PMAAS), poly(acrylic acid) (PAA), and poly(sodium 11-acrylamidoundecanoate) (PAaU) blocks are synthesized and assessed. PSSS-based copolymers exhibit greater anticoagulant activity than PAMPS-based ones. Their activity is mainly affected by the total concentration of sulfonate groups and molecular weight. PEG-containing copolymers demonstrate a better safety profile than PAA-containing ones. The selected copolymer PEG47-PSSS32 exhibits potent anticoagulant activity in rodents after subcutaneous and intravenous administration. Heparin Binding Copolymer (HBC) completely reverses the anticoagulant activity of polymer in rat and human plasma. No interaction with platelets is observed. Selected copolymer targets mainly factor XII and fibrinogen, and to a lesser extent factors X, IX, VIII, and II, suggesting potential application in blood-contacting biomaterials for anticoagulation purposes. Further studies are needed to explore its therapeutic applications fully.

2.
Thromb J ; 21(1): 58, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208753

RESUMO

The assessment of hemostasis is necessary to make suitable decisions on the management of patients with thrombotic disorders. In some clinical situations, for example, during thrombophilia screening, the presence of anticoagulants in sample makes diagnosis impossible. Various elimination methods may overcome anticoagulant interference. DOAC-Stop, DOAC-Remove and DOAC Filter are available methods to remove direct oral anticoagulants in diagnostic tests, although there are still reports on their incomplete efficacy in several assays. The new antidotes for direct oral anticoagulants - idarucizumab and andexanet alfa - could be potentially useful, but have their drawbacks. The necessity to remove heparins is also arising as heparin contamination from central venous catheter or therapy with heparin disturbs the appropriate hemostasis assessment. Heparinase and polybrene are already present in commercial reagents but a fully-effective neutralizer is still a challenge for researchers, thus promising candidates remain in the research phase.

3.
Metabolites ; 12(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144281

RESUMO

Psoriasis, vitiligo and lichen planus (LP) are autoimmune skin diseases associated with metabolic syndrome. Angiopoietin-like 4 (ANGPTL4) is a member of angiopoietin-like proteins, which play an important role in lipid metabolism, and its serum concentration has been proposed as a biomarker of cardiometabolic complications, especially coronary artery disease (CAD). The study involved 56 patients with abovementioned dermatoses and 29 sex- and age-matched volunteers without dermatoses. ANGPTL4 serum concentration was measured by ELISA. ANGPTL4 concentration was statistically significantly higher in patients with LP compared to the control group (p < 0.01); moreover, it was significantly higher than in patients with psoriasis and vitiligo (p < 0.001, p < 0.01, respectively). There was no statistically significant difference in ANGPTL4 concentration between patients with psoriasis or vitiligo and controls. There was no correlation between ANGPTL4 concentration and age or BMI in all study groups. There was a positive correlation between ANGPTL4 concentration and fasting glucose (R = 0.43) and AST activity (R = 0.39) in psoriatic patients and ALT activity in patients with vitiligo (R = 0.44). ANGPTL4 could be a potential marker of metabolic complications in patients with LP, especially CAD. Perhaps patients with LP are more prone to CAD compared to the other two dermatoses, which requires further research.

4.
J Clin Med ; 11(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35456329

RESUMO

The routine monitoring of direct oral anticoagulants (DOACs) may be considered in patients with renal impairment, patients who are heavily obese, or patients requiring elective surgery. Using the heparin-binding copolymer (HBC) and polybrene, we aimed to develop a solution for monitoring the anticoagulant activity of DOACs in human plasma in the interfering presence of unfractionated heparin (UFH) and enoxaparin. The thrombin time (TT) and anti-factor Xa activity were monitored in pooled plasma from healthy volunteers. In these tests, plasma with dabigatran or rivaroxaban was mixed with UFH or enoxaparin and then incubated with HBC or polybrene, respectively. HBC and polybrene neutralized heparins and enabled monitoring of anticoagulant activity of dabigatran in the TT test. Both agents allowed for accurate measurement of anti-factor Xa activity in the plasma containing rivaroxaban and heparins in the concentration range reached in patients' blood. Here, we present diagnostic tools that may improve the control of anticoagulation by eliminating the contamination of blood samples with heparins and enabling the monitoring of DOACs' activity.

5.
Vaccine ; 40(13): 1996-2002, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35183388

RESUMO

ChAdOx1 nCoV-19 adenoviral vector vaccine (ChAd) against coronavirus disease 2019 has been associated with vaccine-induced thrombosis and thrombocytopenia (VITT), especially in young women who have presented with unusual localized thrombosis after receiving the vaccine. The pathogenesis of VITT remains incompletely understood. We tried to provide new insights into mechanisms underlying this phenomenon in the model of arterial thrombosis electrically induced in the carotid artery of female rats. At 28 days post-vaccination, ChAd induced SARS-CoV-2-specific neutralizing antibody responses in all animals. The analysis of the blood vessel/thrombus area showed slight luminal narrowing of the carotid artery with extravasation of blood in vaccinated rats. These small changes were not accompanied by differences in thrombus weight and composition. The vaccinated animals presented a slight increase (by around 14-24%) in platelet aggregation. ChAd did not significantly affect blood coagulation, platelet counts, and their activation markers. Unaffected thrombus formation, the lack of thrombocytopenia and all the measured blood and hemostasis parameters that predominantly stayed unchanged, indicate that the ChAd does not increase the risk of arterial thrombosis development in female rats.


Assuntos
COVID-19 , Trombose , Vacinas , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Feminino , Humanos , Agregação Plaquetária , Ratos , SARS-CoV-2 , Trombose/etiologia , Trombose/prevenção & controle
6.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959624

RESUMO

The methods used in preclinical studies should minimize the suffering and the number of animals but still provide precise and consistent results enabling the introduction of drug candidates into the phase of clinical trials. Thus, we aimed to develop a method allowing us to perform preliminary safety and toxicity studies of candidates for human medicines, while reducing the number of animals. We have devised a method based on a combination of two devices: Plugsys (Transonics System Inc., Ithaca, NY, USA) and PhysioSuite (Kent Scientific Corporation, Torrington, CT, USA), which allow simultaneous registration of nine circulatory and respiratory parameters, and body temperature. Vehicle and adrenaline, or nitroglycerin, as reference substances were administered into the right femoral vein of Wistar rats. Physiological conditions were registered over 60 min after drug administration by measuring systolic, diastolic and mean blood pressure, heart rate (HR), blood perfusion of paw vessels, blood oxygen saturation, respiratory rate, average and peak exhaled CO2, and body temperature. Blood pressure was measured by cannula placed in the left common carotid artery and connected to the pressure transducer (Plugsys). The other parameters were measured by the PhysioSuite. Adrenaline-induced immediate dose-related hypertension and nitroglycerin hypotension were correlated with the change in blood perfusion. They both increased HR. Adrenaline decreased blood oxygen saturation and slightly affected respiratory parameters, while nitroglycerin caused a progressive increase in respiratory rate and a decrease in the peak of exhaled CO2. Our method may become an inseparable part of the preliminary safety and toxicity studies of tested drugs, while being an important step towards improving animal welfare.

7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681808

RESUMO

Uncontrolled bleeding after enoxaparin (ENX) is rare but may be life-threatening. The only registered antidote for ENX, protamine sulfate (PS), has 60% efficacy and can cause severe adverse side effects. We developed a diblock copolymer, heparin-binding copolymer (HBC), that reverses intravenously administered heparins. Here, we focused on the HBC inhibitory activity against subcutaneously administered ENX in healthy mice. BALB/c mice were subcutaneously injected with ENX at the dose of 5 mg/kg. After 110 min, vehicle, HBC (6.25 and 12.5 mg/kg), or PS (5 and 10 mg/kg) were administered into the tail vein. The blood was collected after 3, 10, 60, 120, 360, and 600 min after vehicle, HBC, or PS administration. The activities of antifactors Xa and IIa and biochemical parameters were measured. The main organs were collected for histological analysis. HBC at the lower dose reversed the effect of ENX on antifactor Xa activity for 10 min after antidote administration, whereas at the higher dose, HBC reversed the effect on antifactor Xa activity throughout the course of the experiment. Both doses of HBC completely reversed the effect of ENX on antifactor IIa activity. PS did not reverse antifactor Xa activity and partially reversed antifactor IIa activity. HBC modulated biochemical parameters. Histopathological analysis showed changes in the liver, lungs, and spleen of mice treated with HBC and in the lungs and heart of mice treated with PS. HBC administered in an appropriate dose might be an efficient substitute for PS to reverse significantly increased anticoagulant activity that may be connected with major bleeding in patients receiving ENX subcutaneously.


Assuntos
Enoxaparina/efeitos adversos , Hemorragia/tratamento farmacológico , Protaminas/uso terapêutico , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Testes de Coagulação Sanguínea , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Enoxaparina/administração & dosagem , Feminino , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Heparina/metabolismo , Antagonistas de Heparina/metabolismo , Antagonistas de Heparina/farmacologia , Antagonistas de Heparina/uso terapêutico , Infusões Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacologia , Polímeros/uso terapêutico , Protaminas/metabolismo , Protaminas/farmacologia , Ligação Proteica
8.
Pharmaceutics ; 13(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34452183

RESUMO

MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 µmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 µM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.

9.
Pharmaceutics ; 13(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803176

RESUMO

Protamine sulfate (PS) is the only available option to reverse the anticoagulant activity of unfractionated heparin (UFH), however it can cause cardiovascular and respiratory complications. We explored the toxicity of PS and its complexes with UFH in zebrafish, rats, and mice. The involvement of nitric oxide (NO) in the above effects was investigated. Concentration-dependent lethality, morphological defects, and decrease in heart rate (HR) were observed in zebrafish larvae. PS affected HR, blood pressure, respiratory rate, peak exhaled CO2, and blood oxygen saturation in rats. We observed hypotension, increase of HR, perfusion of paw vessels, and enhanced respiratory disturbances with increases doses of PS. We found no effects of PS on human hERG channels or signs of heart damage in mice. The hypotension in rats and bradycardia in zebrafish were partially attenuated by the inhibitor of endothelial NO synthase. The disturbances in cardiovascular and respiratory parameters were reduced or delayed when PS was administered together with UFH. The cardiorespiratory toxicity of PS seems to be charge-dependent and involves enhanced release of NO. PS administered at appropriate doses and ratios with UFH should not cause permanent damage of heart tissue, although careful monitoring of cardiorespiratory parameters is necessary.

10.
J Pharmacol Exp Ther ; 373(1): 51-61, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31937564

RESUMO

Bleeding resulting from the application of low-molecular-weight heparins (LMWHs) may be treated with protamine sulfate, but this treatment lacks efficiency; its action against antifactor Xa activity is limited to ∼60%. Moreover, protamine sulfate can cause life-threatening hypersensitivity reactions. We developed diblock heparin-binding copolymer (HBC), which can neutralize the anticoagulant activity of parenteral anticoagulants. In the present study, we explored the safety profile of HBC and its potential to reverse enoxaparin, nadroparin, dalteparin, and tinzaparin in human plasma and at in vivo conditions. HBC-LMWH complexes were characterized using zeta potential, isothermal titration calorimetry, and dynamic light scattering. The rat cardiomyocytes and human endothelial cells were used for the assessment of in vitro toxicity. Male Wistar rats were observed for up to 4 days after HBC administration for clinical evaluation, gross necropsy, and biochemistry and histopathological analysis. Rats were treated with LMWHs alone or followed by short-time intravenous infusion of HBC, and bleeding time and antifactor Xa activity were measured. HBC completely reversed antifactor Xa activity prolonged in vitro by all LMWHs with an optimal weight ratio of 2.5:1. The complexes of HBC-LMWHs were below 5 µm. We observed no effects on the viability of cardiovascular cells treated with HBC at concentrations up to 0.05 mg/ml. Single doses up to 20 mg/kg of HBC were well tolerated by rats. HBC completely reversed the effects of LMWHs on bleeding time and antifactor Xa activity in vivo after 20 minutes and retained ∼80% and ∼60% of reversal activity after 1 and 2 hours, respectively. Well-documented efficacy and safety of HBC both in vitro and in vivo make this polymer a promising candidate for LMWHs reversal. SIGNIFICANCE STATEMENT: Over the last decade, there has been significant progress in developing antidotes for the reversal of anticoagulants. Until now, there has been no effective and safe treatment for patients with severe bleeding under low-molecular-weight heparin therapy. Based on our in vitro and in vivo studies, heparin-binding copolymer seems to be a promising candidate for neutralizing all clinically relevant low-molecular-weight heparins.


Assuntos
Anticoagulantes/metabolismo , Antídotos/metabolismo , Hemorragia/metabolismo , Heparina de Baixo Peso Molecular/metabolismo , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Relação Dose-Resposta a Droga , Fator Xa/metabolismo , Hemorragia/prevenção & controle , Heparina/efeitos adversos , Heparina/metabolismo , Heparina de Baixo Peso Molecular/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar
11.
Mar Drugs ; 17(9)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533230

RESUMO

Protamine sulfate (PS) is a polycationic protein drug obtained from the sperm of fish, and is used to reverse the anticoagulant effect of unfractionated heparin (UFH). However, the interactions between PS, UFH, and platelets are still not clear. We measured the platelet numbers and collagen-induced aggregation, P-selectin, platelet factor 4, ß-thromboglobulin, prostacyclin metabolite, D-dimers, activated partial thromboplastin time, prothrombin time, anti-factor Xa, fibrinogen, thrombus weight and megakaryocytopoiesis in blood collected from mice and rats in different time points.. All of the groups were treated intravenously with vehicle, UFH, PS, or UFH with PS. We found a short-term antiplatelet activity of PS in mice and rats, and long-term platelet-independent antithrombotic activity in rats with electrically-induced thrombosis. The antiplatelet and antithrombotic potential of PS may contribute to bleeding risk in PS-overdosed patients. The inhibitory effect of PS on the platelets was attenuated by UFH without inducing thrombocytopenia. Treatment with UFH and PS did not affect the formation, number, or activation of platelets, or the thrombosis development in rodents.


Assuntos
Anticoagulantes/efeitos adversos , Antagonistas de Heparina/efeitos adversos , Heparina/efeitos adversos , Protaminas/efeitos adversos , Trombocitopenia/diagnóstico , Animais , Anticoagulantes/administração & dosagem , Plaquetas/efeitos dos fármacos , Modelos Animais de Doenças , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Heparina/administração & dosagem , Antagonistas de Heparina/administração & dosagem , Humanos , Masculino , Camundongos , Tempo de Tromboplastina Parcial , Agregação Plaquetária/efeitos dos fármacos , Protaminas/administração & dosagem , Ratos , Trombocitopenia/sangue , Trombocitopenia/induzido quimicamente , Fatores de Tempo
12.
RSC Adv ; 9(6): 3020-3029, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518950

RESUMO

Besides regulating ligand-receptor and cell-cell interactions, heparan sulfate (HS) may participate in the development of many diseases, such as cancer, bacterial or viral infections, and their complications, like bleeding or inflammation. In these cases, the neutralization of HS could be a potential therapeutic target. The heparin-binding copolymer (HBC, PEG41-PMAPTAC53) was previously reported by us as a fully synthetic compound for efficient and safe neutralization of heparins and synthetic anticoagulants. In a search for molecular antagonists of HS, we examined the activity of HBC as an HS inhibitor both in vitro and in vivo and characterized HBC/HS complexes. Using a colorimetric Azure A method, isothermal titration calorimetry and dynamic light scattering techniques we found that HBC binds HS by forming complexes below 200 nm with less than 1 : 1 stoichiometry. We confirmed the HBC inhibitory effect in rats by measuring activated partial thromboplastin time, prothrombin time, anti-factor Xa activity, anti-factor IIa activity, and platelet aggregation. HBC reversed the enhancement of all tested parameters caused by HS demonstrating that cationic synthetic block copolymers may have a therapeutic value in various disorders involving overproduction of HS.

13.
Biomacromolecules ; 19(7): 3104-3118, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733637

RESUMO

Di- and triblock copolymers with low dispersity of molecular weight were synthesized using radical addition-fragmentation chain transfer polymerization. The copolymers contained anionic poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS) block as an anticoagulant component. The block added to lower the toxicity was either poly(ethylene glycol) (PEG) or poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC). The polymers prolonged clotting times both in vitro and in vivo. The influence of the polymer architecture and composition on the efficacy of anticoagulation and safety parameters was evaluated. The polymer with the optimal safety/efficacy profile was PEG47- b-PAMPS108, i.e., a block copolymer with the degrees of polymerization of PEG and PAMPS blocks equal to 47 and 108, respectively. The anticoagulant action of copolymers is probably mediated by antithrombin, but it differs from that of unfractionated heparin. PEG47- b-PAMPS108 also inhibited platelet aggregation in vitro and increased the prostacyclin production but had no antiplatelet properties in vivo. PEG47- b-PAMPS108 anticoagulant activity can be efficiently reversed with a copolymer of PEG and poly((3-(methacryloylamino)propyl)trimethylammonium chloride) (PMAPTAC) (PEG41- b-PMAPTAC53, HBC), which may be attributed to the formation of polyelectrolyte complexes with PEG shells without anticoagulant properties.


Assuntos
Anticoagulantes/síntese química , Polímeros/química , Ácidos Sulfônicos/química , Animais , Anticoagulantes/farmacologia , Masculino , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Agregação Plaquetária/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/farmacologia , Ratos , Ratos Wistar , Ácidos Sulfônicos/farmacologia
14.
Transl Res ; 177: 98-112.e10, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27456749

RESUMO

The parenteral anticoagulants may cause uncontrolled and life-threatening bleeding. Protamine, the only registered heparin antidote, is partially effective against low-molecular weight heparins, completely ineffective against fondaparinux and may cause unacceptable toxicity. Therefore, we aimed to develop a synthetic compound for safe and efficient neutralization of all parenteral anticoagulants. We synthesized pegylated PMAPTAC block copolymers, and then, we selected a lead heparin-binding copolymer (HBC). We assessed the effectiveness of HBC in the model of arterial thrombosis electrically induced in the carotid artery of rats by measuring thrombus weight, bleeding time, activated partial thromboplastin time, activated clotting time, and anti-factor Xa activity. The intravital tissue distribution, the cardiorespiratory, and organ toxicity were monitored. HBC diminished antithrombotic and anticoagulant effects of unfractionated heparin. Moreover, it stopped bleeding and completely reversed the enhancement of clotting times and anti-factor Xa activity caused by enoxaparin or fondaparinux. We observed slight pulmonary congestion and cell infiltration, but the cardiorespiratory parameters remained unchanged. We found a strong signal of fluorescently-labeled HBC in the urine, and a weaker in the liver and in the kidney. No signs of hepatic or nephrotoxicity were observed in the blood biochemistry or histopathologic examination. We developed a copolymer efficiently neutralizing effects of heparins in the living organism, which shows a very promising efficacy/safety profile and may help in the management of uncontrolled bleeding resulting from an anticoagulant injection. HBC could enable the safe replacement of unfractionated heparin with low-molecular weight heparins in patients undergoing cardiac surgery and complex vascular procedures.


Assuntos
Enoxaparina/farmacologia , Heparina/farmacologia , Polímeros/farmacologia , Polissacarídeos/farmacologia , Adulto , Animais , Anticoagulantes/farmacologia , Tempo de Sangramento , Sobrevivência Celular/efeitos dos fármacos , Enoxaparina/administração & dosagem , Fondaparinux , Heparina/administração & dosagem , Humanos , Masculino , Camundongos Nus , Testes de Neutralização , Especificidade de Órgãos/efeitos dos fármacos , Tempo de Tromboplastina Parcial , Polissacarídeos/administração & dosagem , Ratos Wistar , Trombose/patologia
15.
Expert Opin Drug Metab Toxicol ; 12(8): 897-909, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27223896

RESUMO

INTRODUCTION: Unfractionated heparin is a strongly anionic anticoagulant used extensively in medicine to prevent blood clotting. In the case of an emergency bleeding in response to heparin, the protamine sulfate is administered. Despite its extensive clinical use, protamine may produce life-threatening side effects such as systemic hypotension, catastrophic pulmonary vasoconstriction or allergic reactions. Recent studies have demonstrated new organ-specific complications of the heparin reversal with protamine. AREAS COVERED: Past and present knowledge of the mechanisms responsible for the toxicity of protamine and the most promising potential replacements of protamine in the different phases of development. EXPERT OPINION: Despite of the low therapeutic index, protamine is the only registered antidote of heparins. The toxicology of protamine depends on a complex interaction of the high molecular weight, a cationic peptide with the surfaces of the vasculature and blood cells. The mechanisms involve membrane receptors and ion channels targeted by different vasoactive compounds, such as nitric oxide, bradykinin or histamine. Unacceptable side effects of protamine have led to a search for new alternatives: UHRA, LMWP, and Dex40-GTMAC3 are in the preclinical stage; the two other agents (andexanet alfa and PER977) are already in the advanced clinical phases.


Assuntos
Antagonistas de Heparina/efeitos adversos , Heparina/efeitos adversos , Protaminas/efeitos adversos , Animais , Anticoagulantes/efeitos adversos , Antídotos/efeitos adversos , Antídotos/uso terapêutico , Desenho de Fármacos , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Antagonistas de Heparina/uso terapêutico , Humanos , Protaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA