Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(Suppl 1): S11507, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38390518

RESUMO

In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.

2.
Neuron ; 112(6): 1020-1032.e7, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266645

RESUMO

To survive, animals need to balance their exploratory drive with their need for safety. Subcortical circuits play an important role in initiating and modulating movement based on external demands and the internal state of the animal; however, how motivation and onset of locomotion are regulated remain largely unresolved. Here, we show that a glutamatergic pathway from the medial septum and diagonal band of Broca (MSDB) to the ventral tegmental area (VTA) controls exploratory locomotor behavior in mice. Using a self-supervised machine learning approach, we found an overrepresentation of exploratory actions, such as sniffing, whisking, and rearing, when this projection is optogenetically activated. Mechanistically, this role relies on glutamatergic MSDB projections that monosynaptically target a subset of both glutamatergic and dopaminergic VTA neurons. Taken together, we identified a glutamatergic basal forebrain to midbrain circuit that initiates locomotor activity and contributes to the expression of exploration-associated behavior.


Assuntos
Comportamento Exploratório , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/metabolismo , Motivação
3.
Pharmacol Res ; 196: 106895, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652281

RESUMO

Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.

5.
Front Neural Circuits ; 15: 699798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366795

RESUMO

The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.


Assuntos
Locomoção/fisiologia , Motivação/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Ritmo Teta/fisiologia , Animais , Feixe Diagonal de Broca/efeitos dos fármacos , Feixe Diagonal de Broca/fisiologia , Agonistas GABAérgicos/farmacologia , Humanos , Locomoção/efeitos dos fármacos , Motivação/efeitos dos fármacos , Movimento/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Ritmo Teta/efeitos dos fármacos
6.
Hippocampus ; 29(12): 1224-1237, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31301163

RESUMO

The hippocampus is an extended structure displaying heterogeneous anatomical cell layers along its dorsoventral axis. It is known that dorsal and ventral regions show different integrity when it comes to functionality, innervation, gene expression, and pyramidal cell properties. Still, whether hippocampal interneurons exhibit different properties along the dorsoventral axis is not known. Here, we report electrophysiological properties of dorsal and ventral oriens lacunosum moleculare (OLM) cells from coronal sections of the Chrna2-cre mouse line. We found dorsal OLM cells to exhibit a significantly more depolarized resting membrane potential compared to ventral OLM cells, while action potential properties were similar between the two groups. We found ventral OLM cells to show a higher initial firing frequency in response to depolarizing current injections but also to exhibit a higher spike-frequency adaptation than dorsal OLM cells. Additionally, dorsal OLM cells displayed large membrane sags in response to negative current injections correlating with our results showing that dorsal OLM cells have more hyperpolarization-activated current (Ih ) compared to ventral OLM cells. Immunohistochemical examination indicates the h-current to correspond to hyperpolarization-activated cyclic nucleotide-gated subunit 2 (HCN2) channels. Computational studies suggest that Ih in OLM cells is essential for theta oscillations in hippocampal circuits, and here we found dorsal OLM cells to present a higher membrane resonance frequency than ventral OLM cells. Thus, our results highlight regional differences in membrane properties between dorsal and ventral OLM cells allowing this interneuron to differently participate in the generation of hippocampal theta rhythms depending on spatial location along the dorsoventral axis of the hippocampus.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Potenciais da Membrana/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
7.
Hippocampus ; 29(1): 15-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152905

RESUMO

Salicylate intoxication is a cause of tinnitus in humans and it is often used to produce tinnitus-like perception in animal models. Here, we assess whether salicylate induces anxiety-like electrophysiological and behavioral signs. Using microwire electrode arrays, we recorded local field potential in the ventral and, in some experiments dorsal hippocampus, in an open field arena 1 hr after salicylate (300 mg/kg) injection. We found that animals treated with salicylate moved dramatically less than saline treated animals. Salicylate-treated animals showed a strong 4-6 Hz (type 2) oscillation in the ventral hippocampus (with smaller peaks in dorsal hippocampus electrodes). Coherence in the 4-6 Hz-theta band was low in the ventral and dorsal hippocampus when compared to movement-related theta coherence (7-10 Hz). Moreover, movement related theta oscillation frequency decreased and its dependency on running speed was abolished. Our results suggest that salicylate-induced theta is mostly restricted to the ventral hippocampus. Slow theta has been classically associated to anxiety-like behaviors. Here, we show that salicylate application can consistently generate low frequency theta in the ventral hippocampus. Tinnitus and anxiety show strong comorbidity and the increase in ventral hippocampus low frequency theta could be part of this association.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/psicologia , Hipocampo/efeitos dos fármacos , Corrida/psicologia , Salicilatos/toxicidade , Ritmo Teta/efeitos dos fármacos , Animais , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Corrida/fisiologia , Ritmo Teta/fisiologia
8.
Nat Commun ; 9(1): 3638, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194386

RESUMO

Dorsal and ventral hippocampus regions exert cognition and emotion-related functions, respectively. Since both regions display rhythmic activity, specific neural oscillatory pacemakers may underlie their functional dichotomy. Type 1 theta oscillations are independent of cholinergic transmission and are observed in the dorsal hippocampus during movement and exploration. In contrast, type 2 theta depends on acetylcholine and appears when animals are exposed to emotionally laden contexts such as a predator presence. Despite its involvement in emotions, type 2 theta has not been associated with the ventral hippocampus. Here, we show that optogenetic activation of oriens-lacunosum moleculare (OLM) interneurons in the ventral hippocampus drives type 2 theta. Moreover, we found that type 2 theta generation is associated with increased risk-taking behavior in response to predator odor. These results demonstrate that two theta oscillations subtypes originate in the two hippocampal regions that predominantly underlie either cognitive or emotion-related functions.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Assunção de Riscos , Ritmo Teta , Animais , Masculino , Camundongos , Camundongos Transgênicos , Odorantes , Optogenética , Receptores Nicotínicos/metabolismo
9.
Neuron ; 99(2): 404-412.e3, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29983324

RESUMO

Inhibitory interneurons participate in mnemonic processes. However, defined roles for identified interneuron populations are scarce. A subpopulation of oriens lacunosum-moleculare (OLM) interneurons genetically defined by the expression of the nicotinic receptor α2 subunit has been shown to gate information carried by either the temporoammonic pathway or Schaffer collaterals in vitro. Here we set out to determine whether selective modulation of OLMα2 cells in the intermediate CA1 affects learning and memory in vivo. Our data show that intermediate OLMα2 cells can either enhance (upon their inhibition) or impair (upon their activation) object memory encoding in freely moving mice, thus exerting bidirectional control. Moreover, we find that OLMα2 cell activation inhibits fear-related memories and that OLMα2 cells respond differently to nicotine in the dorsoventral axis. These results suggest that intermediate OLMα2 cells are an important component in the CA1 microcircuit regulating learning and memory processes. VIDEO ABSTRACT.


Assuntos
Aprendizagem da Esquiva/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Receptores Nicotínicos/biossíntese , Animais , Região CA1 Hipocampal/química , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Nicotínicos/genética
10.
Neurophotonics ; 3(1): 015002, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26835485

RESUMO

Optogenetics allows light activation of genetically defined cell populations and the study of their link to specific brain functions. While it is a powerful method that has revolutionized neuroscience in the last decade, the shortcomings of directly stimulating electrodes and living tissue with light have been poorly characterized. Here, we assessed the photovoltaic effects in local field potential (LFP) recordings of the mouse hippocampus. We found that light leads to several artifacts that resemble genuine LFP features in animals with no opsin expression, such as stereotyped peaks at the power spectrum, phase shifts across different recording channels, coupling between low and high oscillation frequencies, and sharp signal deflections that are detected as spikes. Further, we tested how light stimulation affected hippocampal LFP recordings in mice expressing channelrhodopsin 2 in parvalbumin neurons (PV/ChR2 mice). Genuine oscillatory activity at the frequency of light stimulation could not be separated from light-induced artifacts. In addition, light stimulation in PV/ChR2 mice led to an overall decrease in LFP power. Thus, genuine LFP changes caused by the stimulation of specific cell populations may be intermingled with spurious changes caused by photovoltaic effects. Our data suggest that care should be taken in the interpretation of electrophysiology experiments involving light stimulation.

12.
PLoS One ; 9(6): e99592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24925086

RESUMO

The dorsal striatum is the main input structure of the basal ganglia and the major target area of dopaminergic projections originating in the substantia nigra pars compacta. Heavily involved in the regulation of voluntary movement and habit formation, this structure is of strong importance in Parkinson's disease, obsessive-compulsive disorder, Tourette's syndrome and addiction. The C57/Bl6J mouse strain, the most commonly used strain in preclinical research today, is frequently used as a model organism for analysis of dopaminergic parameters implicated in human pathophysiology. Several components of the dopamine system have been shown to vary with age and sex, however knowledge of the contribution of these factors for dopamine release kinetics in the C57/Bl6J mouse strain is lacking. In the present study, we used an intracranial KCl-stimulation challenge paradigm to provoke release from dopaminergic terminals in the dorsal striatum of anaesthetized C57/Bl6J mice. By high-speed in vivo chronoamperometric recordings, we analyzed DA release parameters in male and female mice of two different ages. Our experiments demonstrate elevated DA amplitudes in adult compared to young mice of both sexes and higher DA amplitudes in females compared to males at both ages. Adult mice exhibited higher recovery capabilities after repeated stimulation than did young mice and also showed a lower variability in the kinetic parameters trise and t80 between stimulations. These results identified age- and sex- dimorphisms in DA release parameters and point to the importance of taking these dimorphisms into account when utilizing the C57/Bl6J mouse strain as model for neurological and neuropsychiatric disorders.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Fatores Etários , Envelhecimento/psicologia , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
13.
Nat Neurosci ; 15(11): 1524-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042082

RESUMO

The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.


Assuntos
Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/classificação , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Valina/análogos & derivados , Valina/farmacologia , Imagens com Corantes Sensíveis à Voltagem , Ácido gama-Aminobutírico/metabolismo
14.
Mol Cell Neurosci ; 49(3): 322-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22273508

RESUMO

Gamma motor neurons (MNs), the efferent component of the fusimotor system, regulate muscle spindle sensitivity. Muscle spindle sensory feedback is required for proprioception that includes sensing the relative position of neighboring body parts and appropriately adjust the employed strength in a movement. The lack of a single and specific genetic marker has long hampered functional and developmental studies of gamma MNs. Here we show that the serotonin receptor 1d (5-ht1d) is specifically expressed by gamma MNs and proprioceptive sensory neurons. Using mice expressing GFP driven by the 5-ht1d promotor, we performed whole-cell patch-clamp recordings of 5-ht1d::GFP⁺ and 5-ht1d::GFP⁻ motor neurons from young mice. Hierarchal clustering analysis revealed that gamma MNs have distinct electrophysiological properties intermediate to fast-like and slow-like alpha MNs. Moreover, mice lacking 5-ht1d displayed lower monosynaptic reflex amplitudes suggesting a reduced response to sensory stimulation in motor neurons. Interestingly, adult 5-ht1d knockout mice also displayed improved coordination skills on a beam-walking task, implying that reduced activation of MNs by Ia afferents during provoked movement tasks could reduce undesired exaggerated muscle output. In summary, we show that 5-ht1d is a novel marker for gamma MNs and that the 5-ht1d receptor is important for the ability of proprioceptive circuits to receive and relay accurate sensory information in developing and mature spinal cord motor circuits.


Assuntos
Retroalimentação Sensorial/fisiologia , Neurônios Motores gama/fisiologia , Fusos Musculares/fisiologia , Neurônios Aferentes/fisiologia , Receptor 5-HT1D de Serotonina/fisiologia , Animais , Camundongos , Camundongos Knockout , Neurônios Motores gama/citologia , Receptor 5-HT1D de Serotonina/análise , Serotonina/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA