Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205565

RESUMO

Collagen is one the most abundant proteins and the main cargo of the secretory pathway, contributing to hepatic fibrosis and cirrhosis due to excessive deposition of extracellular matrix. Here we investigated the possible contribution of the unfolded protein response, the main adaptive pathway that monitors and adjusts the protein production capacity at the endoplasmic reticulum, to collagen biogenesis and liver disease. Genetic ablation of the ER stress sensor IRE1 reduced liver damage and diminished collagen deposition in models of liver fibrosis triggered by carbon tetrachloride (CCl 4 ) administration or by high fat diet. Proteomic and transcriptomic profiling identified the prolyl 4-hydroxylase (P4HB, also known as PDIA1), which is known to be critical for collagen maturation, as a major IRE1-induced gene. Cell culture studies demonstrated that IRE1 deficiency results in collagen retention at the ER and altered secretion, a phenotype rescued by P4HB overexpression. Taken together, our results collectively establish a role of the IRE1/P4HB axis in the regulation of collagen production and its significance in the pathogenesis of various disease states.

2.
Cell Calcium ; 113: 102751, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178674

RESUMO

Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Morte Celular , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
3.
Mol Cell Proteomics ; 22(5): 100534, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958627

RESUMO

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Animais , Neurônios/metabolismo , Neurônios Espinhosos Médios , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Gotículas Lipídicas/metabolismo , Proteômica , Corpo Estriado/metabolismo , Modelos Animais de Doenças
4.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448461

RESUMO

The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions - the mitochondria-associated niches - focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Morte Celular , Transdução de Sinais , Biologia Computacional
6.
Cell Death Dis ; 13(5): 436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508606

RESUMO

The recruitment of DRP1 to mitochondrial membranes prior to fission is facilitated by the wrapping of endoplasmic reticulum (ER) membranes around the mitochondria. To investigate the complex interplay between the ER membranes and DRP1 in the context of mitochondrial structure and function, we downregulate two key ER shaping proteins, RTN4 and CLIMP-63, and demonstrate pronounced mitochondrial hyperfusion and reduced ER-mitochondria contacts, despite their differential regulation of ER architecture. Although mitochondrial recruitment of DRP1 is unaltered in cells lacking RTN4 or CLIMP-63, several aspects of mitochondrial function, such as mtDNA-encoded translation, respiratory capacity and apoptosis are significantly hampered. Further mechanistic studies reveal that CLIMP-63 is required for cristae remodeling (OPA1 proteolysis) and DRP1-mediated mitochondrial fission, whereas both RTN4 and CLIMP-63 regulate the recruitment of BAX to ER and mitochondrial membranes to enable cytochrome c release and apoptosis, thereby performing novel and distinct roles in the regulation of mitochondrial structure and function.


Assuntos
Dinaminas , Mitocôndrias , Apoptose/genética , Dinaminas/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
7.
Cell Death Dis ; 10(12): 912, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801952

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and show promise in solid tumors. In order to explore the therapeutic potential of BH3 mimetics in the treatment of SCCHN, we assessed the expression levels of BCL-2, BCL-XL, and MCL-1 via Western blots and immunohistochemistry, in cell lines, primary cells derived from SCCHN patients and in tissue microarrays containing tumor tissue from a cohort of 191 SCCHN patients. All preclinical models exhibited moderate to high levels of BCL-XL and MCL-1, with little or no BCL-2. Although expression levels of BCL-XL and MCL-1 did not correlate with patient outcome, a combination of BH3 mimetics to target these proteins resulted in decreased clonogenic potential and enhanced apoptosis in all preclinical models, including tumor tissue resected from patients, as well as a reduction of tumor volume in a zebrafish xenograft model of SCCHN. Our results show that SCCHN is dependent on both BCL-XL and MCL-1 for apoptosis evasion and combination therapy targeting both proteins may offer significant therapeutic benefits in this disease.


Assuntos
Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Cell Death Dis ; 10(7): 521, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285422

RESUMO

The endoplasmic reticulum (ER) with its elaborate network of highly curved tubules and flat sheets interacts with several other organelles, including mitochondria, peroxisomes and endosomes, to play vital roles in their membrane dynamics and functions. Previously, we identified structurally diverse chemicals from different pharmacological classes, which induce a reversible reorganisation of ER membranes. Using apogossypol as a prototypic tool compound, we now show that ER membrane reorganisation occurs at the level of ER tubules but does not involve ER sheets. Reorganisation of ER membranes prevents DRP-1-mediated mitochondrial fission, thereby antagonising the functions of several mitochondrial fission-inducing agents. Previous reports have suggested that ER membranes mark the constriction sites of mitochondria by localising DRP-1, as well as BAX on mitochondrial membranes to facilitate both mitochondrial fission and outer membrane permeabilisation. Following ER membrane reorganisation and subsequent exposure to an apoptotic stimulus (BH3 mimetics), DRP-1 still colocalises with the reorganised ER membranes but BAX translocation and activation, cytochrome c release and phosphatidylserine externalisation are all inhibited, thereby diminishing the ability of BH3 mimetics to induce the intrinsic apoptotic pathway. Strikingly, both ER membrane reorganisation and its resulting inhibition of apoptosis could be reversed by inhibitors of dihydroorotate dehydrogenase (DHODH), namely teriflunomide and its active metabolite, leflunomide. However, neither genetic inhibition of DHODH using RNA interference nor metabolic supplementation with orotate or uridine to circumvent the consequences of a loss of DHODH activity rescued the effects of DHODH inhibitors, suggesting that the effects of these inhibitors in preventing ER membrane reorganisation is most likely independent of their ability to antagonise DHODH activity. Our results strengthen the hypothesis that ER is fundamental for key mitochondrial functions, such as fusion-fission dynamics and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Gossipol/análogos & derivados , Dinâmica Mitocondrial/efeitos dos fármacos , Crotonatos/farmacologia , Citocromos c/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Gossipol/farmacologia , Células HeLa , Humanos , Hidroxibutiratos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Leflunomida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Nitrilas , Transporte Proteico/efeitos dos fármacos , Toluidinas/farmacologia , Proteína X Associada a bcl-2/metabolismo
9.
Cell Death Discov ; 5: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341643

RESUMO

Maintenance of mitochondrial integrity is critical for normal cellular homoeostasis. Most cells respond to stress stimuli and undergo apoptosis by perturbing mitochondrial structure and function to release proteins, such as cytochrome c, which are essential for the execution of the intrinsic apoptotic cascade. Cancer cells evade these events by overexpressing the anti-apoptotic BCL-2 family of proteins on mitochondrial membranes. Inhibitors of the anti-apoptotic BCL-2 family proteins, also known as BH3 mimetics, antagonise the pro-survival functions of these proteins and result in rapid apoptosis. Although the precise mechanism by which BH3 mimetics induce apoptosis has been well characterised, not much is known in terms of the structural changes that occur in mitochondria during apoptosis. Using a panel of highly selective BH3 mimetics and a wide range of cell lines, we demonstrate that BH3 mimetics induce extensive mitochondrial fission, accompanied by swelling of the mitochondrial matrix and rupture of the outer mitochondrial membrane. These changes occur in a BAX/ BAK-dependent manner. Although a major mitochondrial fission GTPase, DRP-1, has been implicated in mitochondrial apoptosis, our data demonstrate that DRP-1 might function independently/downstream of BH3 mimetic-mediated mitochondrial fission to facilitate the release of cytochrome c and apoptosis. Moreover, downregulation of DRP-1 prevented cytochrome c release and apoptosis even when OPA1, a protein mediating mitochondrial fusion, was silenced. Although BH3 mimetic-mediated displacement of BAK and other BH3-only proteins from BCL-XL and MCL-1 was unaffected by DRP-1 downregulation, it prevented BAK activation significantly, thus placing DRP-1 as one of the most critical players, along with BAX and BAK, that governs BH3 mimetic-mediated cytochrome c release and apoptosis.

10.
Cell Death Differ ; 26(6): 1037-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185825

RESUMO

The impressive selectivity and efficacy of BH3 mimetics for treating cancer has largely been limited to BCL-2 dependent hematological malignancies. Most solid tumors depend on other anti-apoptotic proteins, including MCL-1, for survival. The recent description of S63845 as the first specific and potent MCL-1 inhibitor represents an important therapeutic advance, since MCL-1 is not targeted by the currently available BH3 mimetics, Navitoclax or Venetoclax, and is commonly associated with chemoresistance. In this study, we confirm a high binding affinity and selectivity of S63845 to induce apoptosis in MCL-1-dependent cancer cell lines. Furthermore, S63845 synergizes with other BH3 mimetics to induce apoptosis in cell lines derived from both hematological and solid tumors. Although the anti-apoptotic BCL-2 family members in these cell lines interact with a spectrum of pro-apoptotic BH3-only proteins to regulate apoptosis, these interactions alone do not explain the relative sensitivities of these cell lines to BH3 mimetic-induced apoptosis. These findings necessitated further investigation into the requirement of BH3-only proteins in BH3 mimetic-mediated apoptosis. Concurrent inhibition of BCL-XL and MCL-1 by BH3 mimetics in colorectal HCT116 cells induced apoptosis in a BAX- but not BAK-dependent manner. Remarkably this apoptosis was independent of all known BH3-only proteins. Although BH3-only proteins were required for apoptosis induced as a result of BCL-XL inhibition, this requirement was overcome when both BCL-XL and MCL-1 were inhibited, implicating distinct mechanisms by which different anti-apoptotic BCL-2 family members may regulate apoptosis in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Proteína bcl-X/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Relação Estrutura-Atividade , Proteína bcl-X/metabolismo
11.
Haematologica ; 104(5): 1016-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30467206

RESUMO

BH3 mimetics are novel targeted drugs with remarkable specificity, potency and enormous potential to improve cancer therapy. However, acquired resistance is an emerging problem. We report the rapid development of resistance in chronic lymphocytic leukemia cells isolated from patients exposed to increasing doses of navitoclax (ABT-263), a BH3 mimetic. To mimic such rapid development of chemoresistance, we developed simple resistance models to three different BH3 mimetics, targeting BCL-2 (ABT-199), BCL-XL (A-1331852) or MCL-1 (A-1210477), in relevant hematologic cancer cell lines. In these models, resistance could not be attributed to either consistent changes in expression levels of the anti-apoptotic proteins or interactions among different pro- and anti-apoptotic BCL-2 family members. Using genetic silencing, pharmacological inhibition and metabolic supplementation, we found that targeting glutamine uptake and its downstream signaling pathways, namely glutaminolysis, reductive carboxylation, lipogenesis, cholesterogenesis and mammalian target of rapamycin signaling resulted in marked sensitization of the chemoresistant cells to BH3 mimetic-mediated apoptosis. Furthermore, our findings highlight the possibility of repurposing widely used drugs, such as statins, to target intermediary metabolism and improve the efficacy of BH3 mimetic therapy.


Assuntos
Antineoplásicos/farmacologia , Biomimética , Resistencia a Medicamentos Antineoplásicos , Glutamina/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Benzotiazóis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Colesterol/biossíntese , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Indóis/farmacologia , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Lipogênese/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas , Proteína bcl-X/antagonistas & inibidores
12.
Cell Death Dis ; 8(1): e2552, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079887

RESUMO

The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias Hematológicas/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Indóis/administração & dosagem , Indóis/química , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Sulfonamidas/química
14.
Oncotarget ; 6(14): 12668-81, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059440

RESUMO

The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Compostos de Piridínio/farmacologia , Pirróis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Indolizinas
15.
PLoS One ; 10(6): e0129298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068922

RESUMO

Current monitoring of acute lymphoblastic leukemia (ALL) in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs.


Assuntos
Proteínas de Choque Térmico HSP90/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Animais , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/sangue , Dexametasona/uso terapêutico , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Transplante Heterólogo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA