Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Ther ; 31(2): 362-373, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114671

RESUMO

The uneven worldwide vaccination coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of variants escaping immunity call for broadly effective and easily deployable therapeutic agents. We have previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes the infectivity and fusogenic activity of the Omicron BA.1 and BA.2 variants. Cryoelectron microscopy (cryo-EM) analysis reveals that scFv76 binds to a well-conserved SARS-CoV-2 spike epitope, providing the structural basis for its broad-spectrum activity. We demonstrate that nebulized scFv76 has therapeutic efficacy in a severe hACE2 transgenic mouse model of coronavirus disease 2019 (COVID-19) pneumonia, as shown by body weight and pulmonary viral load data. Counteraction of infection correlates with inhibition of lung inflammation, as observed by histopathology and expression of inflammatory cytokines and chemokines. Biomarkers of pulmonary endothelial damage were also significantly reduced in scFv76-treated mice. The results support use of nebulized scFv76 for COVID-19 induced by any SARS-CoV-2 variants that have emerged so far.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Microscopia Crioeletrônica , Aerossóis e Gotículas Respiratórios , Anticorpos , Camundongos Transgênicos , Pulmão , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Mol Ther ; 30(5): 1979-1993, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167974

RESUMO

As of December 2021, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global emergency, and novel therapeutics are urgently needed. Here we describe human single-chain variable fragment (scFv) antibodies (76clAbs) that block an epitope of the SARS-CoV-2 spike protein essential for ACE2-mediated entry into cells. 76clAbs neutralize the Delta variant and other variants being monitored (VBMs) and inhibit spike-mediated pulmonary cell-cell fusion, a critical feature of COVID-19 pathology. In two independent animal models, intranasal administration counteracted the infection. Because of their high efficiency, remarkable stability, resilience to nebulization, and low cost of production, 76clAbs may become a relevant tool for rapid, self-administrable early intervention in SARS-CoV-2-infected subjects independently of their immune status.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Humanos , Fragmentos de Imunoglobulinas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
3.
Chem Commun (Camb) ; 57(7): 867-870, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33433550

RESUMO

Antitumor hydroxamates SAHA and Dacinostat have been linked to cetuximab and trastuzumab through a non-cleavable linker based on the p-mercaptobenzyl alcohol structure. These antibody drug conjugates (ADCs) were able to inhibit HDAC in several tumour cell lines. The cetuximab based ADCs block human lung adenocarcinoma cell proliferation, demonstrating that bioconjugation with antibodies is a suitable approach for targeted therapy based on hydroxamic acid-containing drugs. This work also shows that ADC-based delivery might be used to overcome the classical pharmacokinetic problems of hydroxamic acids.


Assuntos
Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Imunoconjugados/química , Células A549 , Proliferação de Células/efeitos dos fármacos , Cetuximab/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Imunoconjugados/metabolismo , Trastuzumab/química
4.
J Enzyme Inhib Med Chem ; 35(1): 1685-1696, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32907434

RESUMO

Heparanase is a validated target in cancer therapy and a potential target for several inflammatory pathologies. A ligand-based virtual screening of commercial libraries was performed to expand the chemical space of small-molecule inhibitors. The screening was based on similarity with known inhibitors and was performed in several runs, starting from literature compounds and progressing through newly discovered inhibitors. Among the fifty-five tested compounds, nineteen had IC50 values lower than 5 µM and some showed remarkable potencies. Importantly, tere- and isophthalamides derivatives belong to new structural classes of heparanase inhibitors and some of them showed enzyme affinities (61 and 63, IC50 = 0.32 and 0.12 µM, respectively) similar to those of the most potent small-molecule inhibitors reported so far. Docking studies provided a comprehensive binding hypothesis shared by compounds with significant structural diversity. The most potent inhibitors reduced cell invasiveness and inhibited the expression of proangiogenic factors in tumour cell lines.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Amidas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Glucuronidase/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
5.
Eur J Med Chem ; 186: 111831, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740052

RESUMO

Heparanase is regarded as a promising target for anticancer drugs and Ronepastat is one of the most promising heparanase inhibitors insert in clinical study for Multiple Myeloma Therapy. To improve its pharmacokinetic/pharmacodynamic profile, as well to have an antidote able to neutralize its activity in case of over dosages or intolerance, a new class of its derivatives was obtained inserting non-carbohydrate moieties of different length between the polysaccharide chain and biotin or its derivatives. In vitro these novel derivatives maintain the anti-heparanase activity without induced toxicity. The newly synthesized compounds retained the ability to attenuate the growth of CAG myeloma tumors in mice with potency similar, or in one case even higher than that of the reference compound Roneparstat as well as inhibited metastatic dissemination (lung colonization) of murine B16-F10 melanoma cells in vivo.


Assuntos
Antineoplásicos/farmacologia , Biotina/química , Glucuronidase/antagonistas & inibidores , Glicóis/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Heparina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glucuronidase/metabolismo , Glicóis/síntese química , Glicóis/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade
6.
Bioorg Med Chem ; 27(15): 3248-3253, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31208798

RESUMO

Tenatumomab is an anti-tenascin murine monoclonal antibody previously used in clinical trials for delivering radionuclides to tumors by both pre-targeting (biotinylated Tenatumomab within PAGRIT) and direct 131Iodine labeling approaches. Here we present the synthesis and in vitro characterization of three Tenatumomab conjugates to bifunctional chelating agents (NHS-DOTA, NCS-DOTA and NCS-DTPA). Results indicate ST8198AA1 (Tenatumomab-DOTAMA, derived by conjugation of NHS-DOTA), as the most promising candidate in terms of conjugation rate and yield, stability, antigen immunoreactivity and affinity. Labeling efficiency of the different chelators was investigated with a panel of cold metals indicating DOTAMA as the best chelator. Labeling of Tenatumomab-DOTAMA was then optimized with several metals and stability performed confirms suitability of this conjugate for further development. ST8198AA1 represents an improvement of the previous antibody forms because the labeling with radionuclides like 177Lu or 64Cu would allow theranostic applications in patients bearing tenascin expressing tumors.


Assuntos
Compostos Heterocíclicos com 1 Anel/farmacologia , Neoplasias/tratamento farmacológico , Tenascina/antagonistas & inibidores , Nanomedicina Teranóstica , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 1 Anel/química , Humanos , Estrutura Molecular , Neoplasias/genética , Relação Estrutura-Atividade , Tenascina/genética
7.
Front Oncol ; 9: 1534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039017

RESUMO

Targeted therapy using monoclonal antibodies conjugated to toxins is gaining space in the treatment of cancer. Here, we report the anti-tumor effect of a new antibody drug conjugate (ADC) delivering a HDAC inhibitor to ErbB2+ solid tumors. Trastuzumab was partially reduced with tris [2-carboxyethyl] phosphine (TCEP) and conjugated to ST7464AA1, the active form of the prodrug HDAC inhibitor ST7612AA1, through a maleimide-thiol linker to obtain the Antibody Drug Conjugate (ADC) ST8176AA1. The average drug/antibody ratio (DAR) was 4.5 as measured by hydrophobic interaction chromatography (HIC). Binding of ST8176AA1 to ErbB2 receptor and internalization in tumor cells were investigated by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), cytofluorimetry, and High Content Screening (HCS) Imaging. The biological activity of the ADC was evaluated in vitro and in vivo by measuring cell proliferation/cell cycle, apoptosis/DNA damage, tubulin, and histone acetylation and modulation of Epithelial/Mesenchymal Transition (EMT) markers. Receptor binding and internalization of ST8176AA1 were confirmed to be similar to trastuzumab. Higher anti-tumor activity of ST8176AA1 compared to trastuzumab was observed in vitro in tumor cell lines. Such higher activity correlated with increased acetylation of histones and alfa-tubulin as a consequence of HDAC inhibitor-mediated epigenetic modulation that also induced increased expression of ErbB2 and estrogen receptor in triple negative breast cancer cells. Consistently with in vitro data, ST8176AA1 exhibited higher tumor growth inhibition than trastuzumab in xenograft models of ovary and colon carcinoma and in two patient-derived xenograft (PDX) models of pancreatic carcinoma. Immunohistochemistry analysis of tumor masses showed lower expression of the proliferation marker Ki67 and higher expression of cleaved caspase-3 in mice treated with the ADC compared to those treated with trastuzumab and results correlated with increased acetylation of both histones and tubulin. Collectively, present data indicate that ADC ST8176AA1 can target epigenetic modulation to ErbB2+ tumors. Interestingly, the amount of HDACi estimated to be delivered at the ST8176AA1 effective dose would correspond to ~1/1,000 of ST7612AA1 effective dose. Therefore, ST8176AA1 is an attractive new therapeutic candidate because it exhibits increased anti-tumor potency compared to trastuzumab by exerting epigenetic modulation at a much safer dose compared to standard HDACi-based therapeutic protocols.

8.
J Med Chem ; 61(23): 10834-10859, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30412404

RESUMO

Heparanase is the only mammalian endo-ß-d-glucuronidase involved in a variety of major diseases. The up-regulation of heparanase expression increases tumor size, angiogenesis, and metastasis, representing a validated target in the anti-cancer field. To date, only a few small-molecule inhibitors have been described, but none have gotten through pre-clinical development. Previously, we explored 2-(4-(4-(bromo-methoxybenzamido)benzylamino)phenyl) benzazole derivatives as anti-heparanase agents, proposing this scaffold for development of broadly effective heparanase inhibitors. Herein, we report an extended investigation of new symmetrical 2-aminophenyl-benzazolyl-5-acetate derivatives, proving that symmetrical compounds are more effective than asymmetrical analogues, with the most-potent compound, 7g, being active at nanomolar concentration against heparanase. Molecular docking studies were performed on the best-acting compounds 5c and 7g to rationalize their interaction with the enzyme. Moreover, invasion assay confirmed the anti-metastatic potential of compounds 5c, 7a, and 7g, proving the inhibition of the expression of proangiogenic factors in tumor cells.


Assuntos
Azóis/química , Azóis/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glucuronidase/química , Humanos , Modelos Moleculares , Conformação Proteica
9.
Chem Sci ; 9(31): 6490-6496, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30288233

RESUMO

We describe here two novel antibody-drug conjugates loaded with the HDAC inhibitor ST7612AA1 (IC50 equal to 0.07 µM on NCI-H460 cells), a thiol-based molecule with a moderate toxicity in vivo. Two payloads were prepared using cleavable and non-cleavable linkers. After anchoring to cetuximab through amide bond with lysines, the resulting HDAC inhibitor-antibody conjugates showed ability to recognize EGFR and efficient internalization in tumor cells. Both ADCs induced sensible increment of histones 3 and 4 and alpha-tubulin acetylation. Animal models of human solid tumors showed high anti-tumor efficacy of the conjugates without the toxicity generally observed with traditional ADCs delivering highly potent cytotoxic drugs. These compounds, the first ADCs charged with not highly cytotoxic warheads, are potentially suitable for epigenetic modulation, extending the ADC strategy to the targeted delivery of HDAC inhibitors with many possible therapeutic applications beyond cancer.

10.
Eur J Med Chem ; 157: 368-379, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30099257

RESUMO

Small series of acylguanidine and acylthiourea derivatives were synthesized in gram-scale and assayed for their ability to modulate the Hh signalling pathway. In vitro studies showed a low micromolar inhibitory activity toward tumor cell lines, while the oral administration revealed an excellent ADME profile in vivo. Compound 5 emerged as the most active and safe inhibitor of colon cancer cells both in vitro and in a xenograft mouse model. Based on these data, 5 could be prioritized to further development with the perspective of clinical studies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Guanidina/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Tioureia/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Guanidina/administração & dosagem , Guanidina/química , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Células NIH 3T3 , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Tioureia/administração & dosagem , Tioureia/química
11.
J Med Chem ; 61(15): 6918-6936, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010344

RESUMO

Heparanase is the sole mammalian enzyme capable of cleaving glycosaminoglycan heparan sulfate side chains of heparan sulfate proteoglycans. Its altered activity is intimately associated with tumor growth, angiogenesis, and metastasis. Thus, its implication in cancer progression makes it an attractive target in anticancer therapy. Herein, we describe the design, synthesis, and biological evaluation of new benzazoles as heparanase inhibitors. Most of the designed derivatives were active at micromolar or submicromolar concentration, and the most promising compounds are fluorinated and/or amino acids derivatives 13a, 14d, and 15 that showed IC50 0.16-0.82 µM. Molecular docking studies were performed to rationalize their interaction with the enzyme catalytic site. Importantly, invasion assay confirmed the antimetastatic potential of compounds 14d and 15. Consistently with its ability to inhibit heparanase, compound 15 proved to decrease expression of genes encoding for proangiogenic factors such as MMP-9, VEGF, and FGFs in tumor cells.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Glucuronidase/química , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Proteica
12.
Oncotarget ; 8(14): 22590-22605, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186982

RESUMO

The oxidized version of Avidin, known as AvidinOX, was previously shown to link to tissue proteins upon injection or nebulization, thus becoming a stable receptor for biotinylated therapeutics. AvidinOX is currently under clinical investigation to target radioactive biotin to inoperable tumor lesions (ClinicalTrials.gov NCT02053324). Presently, we show that the anti-ErbB2 monoclonal antibodies Trastuzumab and Pertuzumab can be chemically biotinylated while maintaining their biochemical and biological properties. By using several and diverse experimental conditions, we show that when AvidinOX is conjugated to tumor cells, low antibody concentrations of biotinylated Trastuzumab (bTrast) or Pertuzumab (bPert) prevent internalization of ErbB2, induce endoplasmic reticulum stress, cell cycle arrest and apoptosis leading to inhibition of proliferation and ErbB2 signaling. Moreover, we found that the treatment is able to induce down-modulation of ErbB2 thus bypassing the known resistance of this receptor to degradation. Interestingly, we show that AvidinOX anchorage is a way to counteract agonistic activities of Trastuzumab and Pertuzumab. Present data are in agreement with previous observations from our group indicating that the engagement of the Epidermal Growth Factor Receptor (EGFR) by AvidinOX-bound biotinylated Cetuximab or Panitumumab, leads to potent tumor inhibition both in vitro and in animal models. All results taken together encourage further investigation of AvidinOX-based treatments with biotinylated antibodies directed to the members of the EGFR family.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Avidina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/administração & dosagem , Avidina/química , Biomarcadores Tumorais/metabolismo , Biotinilação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Receptor ErbB-2/imunologia , Transdução de Sinais , Trastuzumab/administração & dosagem , Células Tumorais Cultivadas
13.
Future Med Chem ; 8(6): 647-80, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27057774

RESUMO

In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-ß-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.


Assuntos
Glucuronidase/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/enzimologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/enzimologia , Glucuronidase/antagonistas & inibidores , Glucuronidase/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Raras/tratamento farmacológico , Doenças Raras/enzimologia , Especificidade por Substrato , Trombose/tratamento farmacológico , Trombose/enzimologia
14.
Glycobiology ; 26(6): 640-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26762172

RESUMO

Heparanase is a ß-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules.


Assuntos
Inibidores Enzimáticos/química , Glucuronidase/química , Heparina/análogos & derivados , Polissacarídeos/química , Acidobacteria/química , Acidobacteria/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , Sequência de Carboidratos , Fondaparinux , Glucuronidase/antagonistas & inibidores , Glucuronidase/metabolismo , Heparina/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
15.
Oncotarget ; 7(1): 914-28, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26575422

RESUMO

For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR. In the mouse model of FaDu cancer, we show that intra-tumor injection of AvidinOX allows anti-tumor activity of an otherwise inactive, intraperitoneally delivered, low dose bCet. Consistently with in vitro data, in vivo tumor inhibition is associated to induction of apoptosis, DNA damage and reduced angiogenesis. AvidinOX is under clinical investigation for delivering radioactive biotin to inoperable tumors (ClinicalTrials.gov NCT02053324) and present data support its use for the local treatment of HNSCC in combination with systemic administration of low dose bCet.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Avidina/administração & dosagem , Biotinilação , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos Nus , Neovascularização Patológica/prevenção & controle , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
16.
Oncotarget ; 6(8): 5735-48, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25671299

RESUMO

ST7612AA1 (property of Sigma-Tau), a thioacetate-ω (γ-lactam amide) derivative, is a potent, second generation, oral pan-histone deacetylase inhibitor (HDACi). Aim of the study was to assess the efficacy of ST7612AA1 in solid and haematological tumors, and to characterize its mechanism of action. In vitro, ST7612AA1 potently inhibited different class I and class II HDACs, leading to restore the balance of both histone and non-histone protein acetylation. In vivo, it induced significant anti-tumor effects in xenograft models of lung, colon, breast and ovarian carcinomas, leukemia and lymphoma. This was likely due to the modulation of different HDAC substrates and induction of transcriptional changes with respect to several genes involved in key processes, such as cell cycle regulation, DNA damage checkpoints, immune response, cell adhesion and epithelial-to-mesenchymal transition. PK analysis confirmed the pro-drug nature of ST7612AA1, which is rapidly absorbed and converted to ST7464AA1 after a single oral dose in mice. ST7612AA1 was selected from a novel generation of oral HDAC inhibitors. Its high efficacy correlated with its potent and selective inhibitory activity of HDAC and was combined with a favorable pharmacodynamics profile. These aspects support a clinical development of ST7612AA1 towards a broad spectrum of human solid and haematologic malignancies.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Pirrolidinonas/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 5(19): 9239-55, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238453

RESUMO

Lung cancer, as well as lung metastases from distal primary tumors, could benefit from aerosol treatment. Unfortunately, because of lung physiology, clearance of nebulized drugs is fast, paralleled by unwanted systemic exposure. Here we report that nebulized AvidinOX can act as an artificial receptor for biotinylated drugs. In nude and SCID mice with advanced human KRAS-mutated A549 metastatic lung cancer, pre-nebulization with AvidinOX enables biotinylated Cetuximab to control tumor growth at a dose lower than 1/25,000 the intravenous effective dose. This result correlates with a striking, specific and unpredictable effect of AvidinOX-anchored biotinylated Cetuximab, as well as Panitumumab, observed on a panel of tumor cell lines, leading to inhibition of dimerization and signalling, blockade of endocytosis, induction of massive lysosomal degradation and abrogation of nuclear translocation of EGFR. Excellent tolerability, together with availability of pharmaceutical-grade AvidinOX and antibodies, will allow rapid clinical translation of the proposed therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Avidina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Administração por Inalação , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab , Endocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Panitumumabe , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
J Med Chem ; 57(20): 8358-77, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25233084

RESUMO

A systematic study of medicinal chemistry aimed at identifying a new generation of HDAC inhibitors, through the introduction of a thiol zinc-binding group (ZBG) and of an amide-lactam in the ω-position of the polyethylene chain of the vorinostat scaffold, allowed the selection of a new class of potent pan-HDAC inhibitors (pan-HDACis). Simple, highly versatile, and efficient synthetic approaches were used to synthesize a library of these new derivatives, which were then submitted to a screening for HDAC inhibition as well as to a preliminary in vitro assessment of their antiproliferative activity. Molecular docking into HDAC crystal structures suggested a binding mode for these thiol derivatives consistent with the stereoselectivity observed upon insertion of amide-lactam substituents in the ω-position. ST7612AA1 (117), selected as a drug candidate for further development, showed an in vitro activity in the nanomolar range associated with a remarkable in vivo antitumor activity, highly competitive with the most potent HDAC inhibitors, currently under clinical trials. A preliminary study of PK and metabolism is also illustrated.


Assuntos
Anilidas/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Pirrolidinonas/farmacologia , Administração Oral , Anilidas/administração & dosagem , Animais , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/química , Histonas/metabolismo , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Pirrolidinonas/administração & dosagem , Proteínas Repressoras/química , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Oncol ; 45(4): 1421-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25096516

RESUMO

4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Resorcinóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Med Chem ; 57(6): 2258-74, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24588105

RESUMO

Ruthenium catalyzed 1,3-cycloaddition (click chemistry) of an azido moiety installed on dihydroxycumene scaffold with differently substituted aryl propiolates gave a new family of 1,4,5-trisubstituted triazole carboxylic acid derivatives that showed high affinity toward Hsp90 associated with cell proliferation inhibition, both in nanomolar range. The 1,5 arrangement of the resorcinol, the aryl moieties, and the presence of an alkyl (secondary) amide in position 4 of the triazole ring were essential to get high activity. Docking simulations suggested that the triazoles penetrate the Hsp90 ATP binding site. Some 1,4,5-trisubstituted triazole carboxamides induced dramatic depletion of the examined client proteins and a very strong increase in the expression levels of the chaperone Hsp70. In vitro metabolic stability and in vivo preliminary studies on selected compounds have shown promising results comparable to the potent Hsp90 inhibitor NVP-AUY922. One of them, (compound 18, SST0287CL1) was selected for further investigation as the most promising drug candidate.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Triazóis/síntese química , Triazóis/farmacologia , Animais , Antineoplásicos/metabolismo , Western Blotting , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Citometria de Fluxo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Indicadores e Reagentes , Isoxazóis/síntese química , Isoxazóis/farmacologia , Camundongos , Modelos Moleculares , Ligação Proteica , Resorcinóis/síntese química , Resorcinóis/farmacologia , Rutênio , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Difração de Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA