Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958639

RESUMO

Protein structure prediction continues to pose multiple challenges despite outstanding progress that is largely attributable to the use of novel machine learning techniques. One of the widely used representations of local 3D structure-protein blocks (PBs)-can be treated in a similar way to secondary structure classes. Here, we present a new approach for predicting local conformation in terms of PB classes solely from amino acid sequences. We apply the RMSD metric to ensure unambiguous future 3D protein structure recovery. The selection of statistically assessed features is a key component of the proposed method. We suggest that ML input features should be created from the statistically significant predictors that are derived from the amino acids' physicochemical properties and the resolved structures' statistics. The statistical significance of the suggested features was assessed using a stepwise regression analysis that permitted the evaluation of the contribution and statistical significance of each predictor. We used the set of 380 statistically significant predictors as a learning model for the regression neural network that was trained using the PISCES30 dataset. When using the same dataset and metrics for benchmarking, our method outperformed all other methods reported in the literature for the CB513 nonredundant dataset (for the PBs, Q16 = 81.01%, and for the DSSP, Q3 = 85.99% and Q8 = 79.35%).


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Aminoácidos/química , Algoritmos
2.
PLoS One ; 16(5): e0239793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014953

RESUMO

MOTIVATION: Local protein structure is usually described via classifying each peptide to a unique class from a set of pre-defined structures. These classifications may differ in the number of structural classes, the length of peptides, or class attribution criteria. Most methods that predict the local structure of a protein from its sequence first rely on some classification and only then proceed to the 3D conformation assessment. However, most classification methods rely on homologous proteins' existence, unavoidably lose information by attributing a peptide to a single class or suffer from a suboptimal choice of the representative classes. RESULTS: To alleviate the above challenges, we propose a method that constructs a peptide's structural representation from the sequence, reflecting its similarity to several basic representative structures. For 5-mer peptides and 16 representative structures, we achieved the Q16 classification accuracy of 67.9%, which is higher than what is currently reported in the literature. Our prediction method does not utilize information about protein homologues but relies only on the amino acids' physicochemical properties and the resolved structures' statistics. We also show that the 3D coordinates of a peptide can be uniquely recovered from its structural coordinates, and show the required conditions under various geometric constraints.


Assuntos
Conformação Proteica , Análise de Sequência de Proteína/métodos , Algoritmos , Humanos
3.
J Mol Model ; 20(3): 2143, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24549797

RESUMO

We present a new force field parameter set for simulating alkanes. Its functional form and parameters are chosen to make it directly compatible with the AMBER94/99/12 family of force fields implemented in the available software. The proposed parameterization enables universal description of both the conformational and thermodynamic properties of linear, branched, and cyclic alkanes. Such unification is achieved by using two essential principles: (1) reduction of the Lennard-Jones radius for all sp3 carbons to 1.75Å; (2) separate optimization of Lennard-Jones well depths for carbons with different degree of substitution. The new parameter set may prove to be optimal for description of alkyl residues in a broad range of biomolecules, from amino acids to lipids with their extended linear tails.


Assuntos
Alcanos/química , Simulação por Computador , Modelos Moleculares , Software , Aminoácidos/química , Lipídeos/química , Conformação Molecular , Estrutura Molecular , Solubilidade , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA