Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Therm Biol ; 119: 103778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171068

RESUMO

Climate change is creating novel thermal environments via rising temperatures and increased frequency of severe weather events. Short-term phenotypic adjustments, i.e., phenotypic plasticity, may facilitate species persistence during adverse environmental conditions. A plastic response that increases thermal tolerance is heat hardening, which buffers organisms from extreme heat and may enhance short term survival. However, heat hardening responses may incur a cost with concomitant decreases in thermal preference and physiological performance. Thus, phenotypic shifts accompanying a hardening response may be maladaptive in warming climates. Understanding how heat hardening influences other traits associated with fitness and survival will clarify its potential as an adaptive response to altered thermal niches. Here, we studied the effects of heat hardening on boldness behavior in the color polymorphic tree lizard, Urosaurus ornatus. Boldness in lizards influences traits such as territory maintenance, mating success, and survivorship and is repeatable in U. ornatus. We found that when lizards underwent a heat hardening response, boldness expression significantly increased. This trend was driven by males. Bolder individuals also exhibited lower field active body temperatures. This behavioral response to heat hardening may increase resource holding potential and territoriality in stressful environments but may also increase predation risk. This study highlights the need to detail associated phenotypic shifts with stress responses to fully understand their adaptive potential in rapidly changing environments.


Assuntos
Calor Extremo , Lagartos , Humanos , Masculino , Animais , Resposta ao Choque Térmico , Temperatura , Adaptação Fisiológica/fisiologia , Temperatura Corporal , Lagartos/fisiologia
2.
Biol Rev Camb Philos Soc ; 99(2): 598-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062628

RESUMO

Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.


Assuntos
Lagartos , Animais , Temperatura , Lagartos/fisiologia , Clima , Aquecimento Global
3.
Ecol Evol ; 13(12): e10723, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089898

RESUMO

Mounting evidence has shown that personality and behavioral syndromes have a substantial influence on interspecific interactions and individual fitness. However, the stability of covariation among multiple behavioral traits involved in antipredator responses has seldom been tested. Here, we investigate whether sex, gravidity, and parasite infestations influence the covariation between risk aversion (hiding time within a refuge) and escape response (immobility, escape distance) using a viviparous lizard, Zootoca vivipara, as a model system. Our results demonstrated a correlation between risk-averse and escape behavior at the among-individual level, but only in gravid females. We found no significant correlations in either males or neonates. A striking result was the loss of association in postparturition females. This suggests that the "risk-averse - escape" syndrome is ephemeral and only emerges in response to constraints on locomotion driven by reproductive burden. Moreover, parasites have the potential to dissociate the correlations between risk aversion and escape response in gravid females, yet the causal chain requires further examination. Overall, our findings provide evidence of differences in the association between behaviors within the lifetime of an individual and indicate that individual states, sex, and life stages can together influence the stability of behavioral syndromes.

4.
Animals (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958091

RESUMO

The present study used light and scanning electron microscopy to describe the integrative morphological description of the tongue and laryngeal mound of Heremites vittatus, an endemic lizard of Saharan Africa. Additionally, ultrastructure, histology, histochemistry, and immunohistochemical approaches were used to characterize the lingual apparatus adaptations. In the present study, Heremites vittatus consisted of a complex lingual papillary system in which the ventral apical surface of the foretongue comprised conical papillae. The dorsal surface consisted of different filiform papillary (papillae filiformes) types: the anterior section had two types (bifid and pointed), and the posterior section had four types (triangular, trifid, quadrifid, and pentafid) papillae. The dorsal midtongue surface exhibits scale-like, serrated filiform papillae with anterior gland openings. The hindtongue consisted of two overlapping filiform papillae: scale-like, board-serrated papillae on the median portion and finger-like papillae on the wings. The dorsal surface of the laryngeal mound had 18 longitudinal folds with glandular openings. Histologically, the foretongue was covered by a slightly keratinized layer that was absent in the mid- and hindtongue. The lingual glands were absent from the foretongue but present in the interpapillary space in the mid- and hindtongues. We observed a few rounded taste buds in the conical papilla epithelium. Histochemical analysis revealed strong glandular Alcian Blue (AB)-positive and Periodic Acid-Schiff (PAS)-positive reactions. Immunohistochemistry showed strong cytokeratin immunopositivity in all parts of the tongue. In conclusion, the obtained data about the lingual characterizations have been consistent with the active foraging behavior of the species and its environmental conditions.

5.
Proc Natl Acad Sci U S A ; 120(35): e1813976120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37624752

RESUMO

We investigated whether celebrated cases of evolutionary radiations of passerine birds on islands have produced exceptional morphological diversity relative to comparable-aged radiations globally. Based on eight external measurements, we calculated the disparity in size and shape within clades, each of which was classified as being tropical or temperate and as having diversified in a continental or an island/archipelagic setting. We found that the distribution of disparity among all clades does not differ substantively from a normal distribution, which would be consistent with a common underlying process of morphological diversification that is largely independent of latitude and occurrence on islands. Disparity is slightly greater in island clades than in those from continents or clades consisting of island and noninsular taxa, revealing a small, but significant, effect of island occurrence on evolutionary divergence. Nonetheless, the number of highly disparate clades overall is no greater than expected from a normal distribution, calling into question the need to invoke key innovations, ecological opportunity, or other factors as stimuli for adaptive radiations in passerine birds.


Assuntos
Evolução Biológica , Passeriformes , Animais , Distribuição Normal , Passeriformes/genética
6.
J Therm Biol ; 113: 103526, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055130

RESUMO

Temperature is a key abiotic factor that influences performance of several physiological traits in ectotherms. Organisms regulate their body temperature within a range of temperatures to enhance physiological function. The capacity of ectotherms, such as lizards, to maintain their body temperature within their preferred range influences physiological traits such as speed, various reproductive patterns, and critical fitness components, such as growth rates or survival. Here, we evaluate the influence of temperature on locomotor performance, sperm morphology and viability in a high elevation lizard species (Sceloporus aeneus). Whereas maximal values for sprint speed coincides with field active and preferred body temperature, short-term exposure at the same range of temperatures produces abnormalities in sperm morphology, lower sperm concentration and diminishes sperm motility and viability. In conclusion, we confirmed that although locomotor performance is maximized at preferred temperatures, there is a trade-off with male reproductive attributes, which may cause infertility. As a consequence, prolonged exposure to preferred temperatures could threaten the persistence of the species through reduced fertility. Persistence of the species is favored in environments with access to cooler, thermal microhabitats that enhance reproductive parameters.


Assuntos
Lagartos , Animais , Masculino , Lagartos/fisiologia , Maturação do Esperma , Sêmen , Motilidade dos Espermatozoides , Temperatura , Regulação da Temperatura Corporal
7.
Proc Biol Sci ; 289(1987): 20221947, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382514

RESUMO

The late Quaternary is characterized by the extinction of many terrestrial megafauna, which included tortoises (Family: Testudinidae). However, limited information is available on how extinction shaped the phenotype of surviving taxa. Here, based on a global dataset of straight carapace length, we investigate the temporal variation, spatial distribution and evolution of tortoise body size over the past 23 million years, thereby capturing the effects of Quaternary extinctions in this clade. We found a significant change in body size distribution characterized by a reduction of both mean body size and maximum body size of extant tortoises relative to fossil taxa. This reduction of body size occurred earlier in mainland (Early Pleistocene 2.588-0.781 Ma) than in island tortoises (Late Pleistocene/Holocene 0.126-0 Ma). Despite contrasting body size patterns between fossil and extant taxa on a spatial scale, tortoise body size showed limited variation over time until this decline. Body size is a fundamental functional trait determining many aspects of species ecologies, with large tortoises playing key roles as ecosystem engineers. As such, the transition from larger sized to smaller sized classes indicated by our findings likely resulted in the homogenization of tortoises' ecological functions and diminished the role of tortoises in structuring the vegetation community.


Assuntos
Tartarugas , Animais , Tartarugas/anatomia & histologia , Ecossistema , Tamanho Corporal , Fósseis , Extinção Biológica
8.
J Anim Ecol ; 91(9): 1906-1917, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35837855

RESUMO

Male lizards often display multiple pigment-based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated. Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation. We performed an integrative study to examine the covariation between three colour signals (melanin-based black, carotenoid-based yellow-orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizards Zootoca vivipara from 13 populations. We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis. We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism.


Les lézards mâles arborent souvent plusieurs signaux colorés de nature pigmentaire et structurale qui reflètent de multiples traits de qualité (e.g. performance, parasitisme), et la testostérone (T) joue souvent un rôle de médiateur dans ces relations. En outre, les conditions environnementales peuvent également expliquer les variations des signaux colorés en influençant des aspects tels que l'efficacité des signaux, la thermorégulation ou le camouflage. Les relations entre signaux colorés, traits de qualité individuelle et facteurs environnementaux ont souvent été analysées séparément, mais rarement de manière simultanée. Ainsi, la réponse de ces multiples signaux colorés aux variations de tous ces facteurs reste à explorer dans le contexte d'une étude intégrative. Ici, nous explorons la relation entre ces multiples signaux colorés et leur contenu informatif, nous examinons le rôle de T comme médiateur potentiel de ces relations et nous recherchons si les conditions environnementales expliquent la variation de ces signaux colorés. Nous avons mené une étude intégrative afin d'examiner la covariation entre trois types de signaux colorés (noir produit par la mélanine, jaune-orange produit par les caroténoïdes et UV produit par des éléments structuraux), la performance physiologique, le parasitisme, les niveaux de T et les conditions environnementales (e.g. microclimat, couverture forestière) chez des mâles du lézard vivipare (Zootoca vivipara) provenant de 13 populations. Nos résultats indiquent que les trois signaux colorés transmettent des informations sur différents aspects de la condition des mâles, en accord avec l'hypothèse de « messages multiples ¼. T influence uniquement le parasitisme, suggérant que T n'agit pas en tant que médiateur des relations entre ces signaux colorés et leur contenu informatif. De plus, les signaux colorés sont plus saturés dans les habitats les plus forestiers, ce qui suggère une adaptation à des conditions lumineuses dégradées. Enfin, les signaux colorés sont plus intenses lorsque les conditions sont mésiques, en contradiction avec l'hypothèse du mélanisme thermal. Nous démontrons que différents traits de qualité individuelle et facteurs environnementaux expliquent de manière simultanée les variations de multiples signaux colorés impliquant différents modes de production. Notre étude souligne ainsi la complexité de l'évolution des signaux colorés, qui implique plusieurs types de pressions de sélection agissant en même temps mais dans des directions différentes selon le mode de production.


Assuntos
Lagartos , Animais , Carotenoides/metabolismo , Cor , Lagartos/fisiologia , Masculino , Fenótipo , Pigmentação
9.
J Therm Biol ; 104: 103192, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180969

RESUMO

Tortoises of the genus Gopherus evolved in North America and have survived major environmental challenges in the past 40 million years. However, this genus now faces multiple anthropogenic threats, such as the introduction of invasive plant species. Buffelgrass (Cenchrus ciliaris) is considered one of the greatest threats to arid and tropical ecosystems, where gopher tortoises inhabit, because the grass displaces native flora and fauna. Modification of the environment as a result of this invasive plant portends an alteration of the available thermal landscape. The aim of this paper is twofold: 1) to evaluate the thermal quality of the primary habitat of Gopherus evgoodei (tropical deciduous forest [TDF], and 2) determine the potential thermal changes due to habitat modification by buffelgrass. First, we obtained data on body temperature of active tortoises in semi-captivity. Second, we measured the operative environmental temperature during 5 years at three sites south of Sonora, Mexico that support G. evgoodei: a) a pristine TDF (Conserved-TDF); b) a forest patch surrounded by introduced buffelgrass pasture (Partial-TDF); and c) an introduced buffelgrass pasture area (Buffel-Pasture). Our results demonstrate that the intact microhabitats within the TDF provide G. evgoodei with high thermal quality at both spatial and temporal scales. However modified habitat by buffelgrass had higher operative temperatures for G. evgoodei than TDF. The thermal quality of the sites disturbed with buffelgrass can exceed the thermal requirements of G. evgoodei by up to 25 °C. Finally, we discussed potential collateral effects of habitat modification by invasion by buffelgrass.


Assuntos
Cenchrus/fisiologia , Ecossistema , Tartarugas/fisiologia , Animais , Florestas , Espécies Introduzidas , México
10.
Evol Hum Sci ; 4: e56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37588901

RESUMO

Parents often weigh social, familial and cultural considerations when choosing their baby's name, but the name they choose could potentially be influenced by their physical or biotic environments. Here we examine whether the popularity of month and season names of girls covary geographically with environmental variables. In the continental USA, April, May and June (Autumn, Summer) are the most common month (season) names: April predominates in southern states (early springs), whereas June predominates in northern states (later springs). Whether April's popularity has increased with recent climate warming is ambiguous. Autumn is most popular in northern states, where autumn foliage is notably colourful, and in eastern states having high coverage of deciduous foliage. On a continental scale, Autumn was most popular in English-speaking countries with intense colouration of autumn foliage. These analyses are descriptive but indicate that climate and vegetation sometimes influence parental choice of their baby's name.

11.
Glob Chang Biol ; 28(4): 1301-1314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856039

RESUMO

Climate-modulated parasitism is driven by a range of factors, yet the spatial and temporal variability of this relationship has received scant attention in wild vertebrate hosts. Moreover, most prior studies overlooked the intraspecific differences across host morphotypes, which impedes a full understanding of the climate-parasitism relationship. In the common lizard (Zootoca vivipara), females exhibit three colour morphs: yellow (Y-females), orange (O-females) and mixed (mixture of yellow and orange, M-females). Zootoca vivipara is also infested with an ectoparasite (Ophionyssus mites). We therefore used this model system to examine the intraspecific response of hosts to parasitism under climate change. We found infestation probability to differ across colour morphs at both spatial (10 sites) and temporal (20 years) scales: M-females had lower parasite infestations than Y- and O-females at lower temperatures, but became more susceptible to parasites as temperature increased. The advantage of M-females at low temperatures was counterbalanced by their higher mortality rates thereafter, which suggests a morph-dependent trade-off between resistance to parasites and host survival. Furthermore, significant interactions between colour morphs and temperature indicate that the relationship between parasite infestations and climate warming was contingent on host morphotypes. Parasite infestations increased with temperature for most morphs, but displayed morph-specific rates. Finally, infested M-females had higher reductions in survival rates than infested Y- or O-females, which implies a potential loss of intraspecific diversity within populations as parasitism and temperatures rise. Overall, we found parasitism increases with warming temperatures, but this relationship is modulated by host morphotypes and an interaction with temperature. We suggest that epidemiological models incorporate intraspecific diversity within species for better understanding the dynamics of wildlife diseases under climate warming.


Assuntos
Lagartos , Parasitos , Animais , Mudança Climática , Feminino
12.
Am Nat ; 198(6): 759-771, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762567

RESUMO

AbstractAn ecological issue can best be studied by gathering original data that are specifically targeted for that issue. But ascertaining-a priori-whether a novel issue will be worth exploring can be problematic without background data. However, an issue's potential merit can sometimes be evaluated by repurposing legacy or other data that had been gathered for unrelated purposes but that are nonetheless relevant. Our present project was initially motivated by an ecological trade-off-proposed eight decades ago-involving the depth at which desert reptiles overwintered. To address those and related issues, we repurposed our five-decades-old natural history data for 18 species of Kgalagadi lizards and then explored the seasonal ecology of these lizards, emphasizing winter. Our data were not gathered for a study of seasonal ecology but nonetheless inform diverse seasonal patterns for a major community of lizards. However, repurposed data (whether recent or legacy) present challenges and ambiguities, and we suggest targeted, next-step studies of seasonal ecology that can circumvent limitations and ambiguities.


Assuntos
Lagartos , Animais , Estações do Ano , Temperatura
13.
Evolution ; 75(10): 2348-2370, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33939188

RESUMO

The diversity of habitats generated by the Andes uplift resulted a mosaic of heterogeneous environments in South America for species to evolve a variety of ecological and physiological specializations. Species in the lizard family Liolaemidae occupy a myriad of habitats in the Andes. Here, we analyze the tempo and mode of evolution in the thermal biology of liolaemids. We assessed whether there is evidence of local adaptation (lability) or conservatism (stasis) in thermal traits. We tested the hypothesis that abiotic factors (e.g., geography, climate) rather than intrinsic factors (egg-laying [oviparous] or live-bearing [viviparous], substrate affinity) explain variation in field active body temperature (Tb ), preferred temperature (Tp ), hours of restriction of activity, and potential hours of activity. Although most traits exhibited high phylogenetic signal, we found variation in thermal biology was shaped by geography, climate, and ecological diversity. Ancestral character reconstruction showed shifts in Tb tracked environmental change in the past ∼20,000 years. Thermal preference is 3°C higher than Tb , yet exhibited a lower rate of evolution than Tb and air temperature. Viviparous Liolaemus have lower Tb s than oviparous species, whereas Tp is high for both modes of reproduction, a key difference that results in a thermal buffer for viviparous species to cope with global warming. The rapid increase in environmental temperatures expected in the next 50-80 years in combination with anthropogenic loss of habitats are projected to cause extirpations and extinctions in oviparous species.


Assuntos
Lagartos , Aclimatação , Animais , Lagartos/genética , Oviparidade , Filogenia , Temperatura
14.
J Anim Ecol ; 90(8): 1864-1877, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33884616

RESUMO

In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations. Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate. We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks. Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation. Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. ​.


Assuntos
Lagartos , Animais , Regulação da Temperatura Corporal , Mudança Climática , Aquecimento Global , Carga Parasitária , Temperatura
15.
J Therm Biol ; 95: 102811, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33454041

RESUMO

Global climate change and the associated erosion of habitat suitability are pervasive threats to biodiversity. It is critical to identify specific stressors to assess a species vulnerability to extinction, especially in species with distinctive natural histories. Here, we present a combination of field, laboratory, and modeling approaches to evaluate the potential consequences of climate change on two endemic, fossorial lizards species (Anniella geronimensis and Bipes biporus) from Baja California, Mexico. We also include soil type in our models to refine the suitable areas using our mechanistic models. Results suggest that both species are at high risk of extinction by global climate change based on the thermal habitat suitability. The forecast for species persistence is most grave under the RCP8.5 scenario. On the one hand, suitable habitat for A. geronimensis diminishes at its southern distribution, but potential suitable expands towards the north. On the other hand, the suitable habitat for B. biporus will contract significantly with a concomitant reduction in its potential distribution. Because both species have low mobility and are restricted to low elevation, the potential for elevational and latitudinal dispersal to mitigate extinction risk along the Baja California Peninsula is unlikely. In addition each species has specialized thermal requirements (i.e., stenothermic) and soil type preferences to which they are adapted. Our ecophysiological models in combination with the type of soil are fundamental in developing conservation strategies.


Assuntos
Mudança Climática , Espécies em Perigo de Extinção , Lagartos/fisiologia , Aclimatação , Distribuição Animal , Animais , Temperatura Corporal , California , Ecossistema
16.
Ecol Evol ; 10(15): 8007-8017, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788957

RESUMO

Regulation of body temperature is crucial for optimizing physiological performance in ectotherms but imposes constraints in time and energy. Time and energy spent thermoregulating can be reduced through behavioral (e.g., basking adjustments) or biophysical (e.g., heating rate physiology) means. In a heterogeneous environment, we expect thermoregulation costs to vary according to local, climatic conditions and therefore to drive the evolution of both behavioral and biophysical thermoregulation. To date, there are limited data showing that thermal physiological adjustments have a direct relationship to climatic conditions. In this study, we explored the effect of environmental conditions on heating rates in the common lizard (Zootoca vivipara). We sampled lizards from 10 populations in the Massif Central Mountain range of France and measured whether differences in heating rates of individuals correlated with phenotypic traits (i.e., body condition and dorsal darkness) or abiotic factors (temperature and rainfall). Our results show that heat gain is faster for lizards with a higher body condition, but also for individuals from habitats with higher amount of precipitation. Altogether, they demonstrate that environmentally induced constraints can shape biophysical aspects of thermoregulation.

17.
Integr Comp Biol ; 60(2): 535-548, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32559284

RESUMO

The integrity of regional and local biological diversity is under siege as a result of multiple anthropogenic threats. The conversion of habitats, such as rain forests, into agricultural ecosystems, reduces the area available to support species populations. Rising temperatures and altered rainfall patterns lead to additional challenges for species. The ability of conservation biologists to ascertain the threats to a species requires data on changes in distribution, abundance, life history, and ecology. The International Union for the Conservation of Nature (IUCN) uses these data to appraise the extinction risk for a species. However, many species remain data deficient (DD) or unassessed. Here, I use 14 morphological traits related to locomotor function, habitat, and feeding to predict the threat status of over 400 species of lizards in the infraorder Iguania. Morphological traits are an ideal proxy for making inferences about a species' risk of extinction. Patterns of morphological covariation have a known association with habitat use, foraging behavior, and physiological performance across multiple taxa. Results from phylogenetic general linear models revealed that limb lengths as well as head characters predicted extinction risk. In addition, I used an artificial neural network (ANN) technique to generate a classification function based on the morphological traits of species with an assigned IUCN threat status. The network approach identified eight morphological traits as predictors of extinction risk, which included head and limb characters. The best supported model had a classification accuracy of 87.4%. Moreover, the ANN model predicted >18% of DD/not assessed species were at risk of extinction. The predicted assessments were supported by other sources of threat status, for example, Convention on International Trade in Endangered Species appendices. Because of the functional link between morphology, performance, and ecology, an ecomorphological approach may be a useful tool for rapid assessment of DD or poorly known species.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Lagartos , Animais , Lagartos/anatomia & histologia , Masculino
18.
J Therm Biol ; 90: 102607, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32479379

RESUMO

For ectotherms, thermal physiology plays a fundamental role in the establishment and success of invasive species in novel areas and, ultimately, in their ecological interactions with native species. Invasive species are assumed to have a greater ability to exploit the thermal environment, higher acclimation capacities, a wider thermal tolerance range, and better relative performance under a range of thermal conditions. Here we compare the thermal ecophysiology of two species that occur in sympatry in a tropical dry forest of the Pacific coast of Mexico, the microendemic species Benedetti's Leaf-toed Gecko (Phyllodactylus benedettii) and the invasive Common House Gecko (Hemidactylus frenatus). We characterized their patterns of thermoregulation, thermoregulatory efficiency, thermal tolerances, and thermal sensitivity of locomotor performance. In addition, we included morphological variables and an index of body condition to evaluate their effects on the thermal sensitivity of locomotor performance in these species. Although the two species had similar selected temperatures and thermal tolerances, they contrasted in their thermoregulatory strategies and thermal sensitivity of locomotor performance. Hemidactylus frenatus had a higher performance than the native species, P. benedettii, which would represent an ecological advantage for the former species. Nevertheless, we suggest that given the spatial and temporal limitations in habitat use of the two species, the probability of agonistic interactions between them is reduced. We recommend exploring additional biotic attributes, such as competition, behavior and niche overlap in order assess the role of alternative factors favoring the success of invasive species.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Espécies Introduzidas , Lagartos/fisiologia , Animais , Feminino , Florestas , Locomoção , Masculino , México , Simpatria , Temperatura , Clima Tropical
19.
Evolution ; 74(5): 979-991, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32190909

RESUMO

Macroclimatic niches are indirect and potentially inadequate predictors of the realized environmental conditions that many species experience. Consequently, analyses of niche evolution based on macroclimatic data alone may incompletely represent the evolutionary dynamics of species niches. Yet, understanding how an organisms' climatic (Grinnellian) niche responds to changing macroclimatic conditions is of vital importance for predicting their potential response to global change. In this study, we integrate microclimatic and macroclimatic data across 26 species of plethodontid salamanders to portray the relationship between microclimatic niche evolution in response to changing macroclimate. We demonstrate stronger phylogenetic signal in microclimatic niche variables than at the macroclimatic scale. Even so, we find that the microclimatic niche tracks climatic changes at the macroscale, but with a phylogenetic lag at million-year timescales. We hypothesize that behavioral tracking of the microclimatic niche over space and phenology generates the lag: salamanders preferentially select microclimates similar to their ancestral conditions rather than adapting with changes in physiology. We demonstrate that macroclimatic variables are weak predictors of niche evolution and that incorporating spatial scale into analyses of niche evolution is critical for predicting responses to climate change.


Assuntos
Evolução Biológica , Mudança Climática , Ecossistema , Microclima , Filogenia , Urodelos/fisiologia , Animais , North Carolina , Ohio , Tennessee , Virginia , West Virginia
20.
Am Nat ; 195(2): 247-274, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017620

RESUMO

Mating system theory based on economics of resource defense has been applied to describe social system diversity across taxa. Such models are generally successful but fail to account for stable mating systems across different environments or shifts in mating system without a change in ecological conditions. We propose an alternative approach to resource defense theory based on frequency-dependent competition among genetically determined alternative behavioral strategies characterizing many social systems (polygyny, monogamy, sneak). We modeled payoffs for competition, neighborhood choice, and paternal care to determine evolutionary transitions among mating systems. Our model predicts four stable outcomes driven by the balance between cooperative and agonistic behaviors: promiscuity (two or three strategies), polygyny, and monogamy. Phylogenetic analysis of 288 rodent species supports assumptions of our model and is consistent with patterns of evolutionarily stable states and mating system transitions. Support for model assumptions include that monogamy and polygyny evolve from promiscuity and that paternal care and monogamy are coadapted in rodents. As predicted by our model, monogamy and polygyny occur in sister taxa among rodents more often than by chance. Transitions to monogamy also favor higher speciation rates in subsequent lineages, relative to polygynous sister lineages. Taken together, our results suggest that genetically based neighborhood choice behavior and paternal care can drive transitions in mating system evolution. While our genic mating system theory could complement resource-based theory, it can explain mating system transitions regardless of resource distribution and provides alternative explanations, such as evolutionary inertia, when resource ecology and mating systems do not match.


Assuntos
Especiação Genética , Preferência de Acasalamento Animal , Roedores/genética , Roedores/fisiologia , Animais , Evolução Biológica , Feminino , Teoria dos Jogos , Masculino , Ligação do Par , Comportamento Paterno , Roedores/classificação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA