Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 642: 123132, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37315638

RESUMO

Through 3D printing (3DP), many parameters of solid oral dosage forms can be customised, allowing for truly personalised medicine in a way that traditional pharmaceutical manufacturing would struggle to achieve. One of the many options for customisation involves dose titration, allowing for gradual weaning of a medication at dose intervals smaller than what is available commercially. In this study we demonstrate the high accuracy and precision of 3DP dose titration of caffeine, selected due to its global prevalence as a behavioural drug and well-known titration-dependent adverse reactions in humans. This was achieved using a simple filament base of polyvinyl alcohol, glycerol, and starch, utilising hot melt extrusion coupled with fused deposition modelling 3DP. Tablets containing 25 mg, 50 mg, and 100 mg doses of caffeine were successfully printed with drug content in the accepted range prescribed for conventional tablets (90 - 110%), and excellent precision whereby the weights of all doses showed a relative standard deviation of no more than 3%. Importantly, these results proved 3D printed tablets to be far superior to splitting a commercially available caffeine tablet. Additional assessment of filament and tablet samples were reviewed by differential scanning calorimetry, thermogravimetric analysis, HPLC, and scanning electron microscopy, showing no evidence of degradation of caffeine or the raw materials, with smooth and consistent filament extrusion. Upon dissolution, all tablets achieved greater than 70% release between 50 and 60 min, showing a predictable rapid release profile regardless of dose. The outcomes of this study highlight the benefits that dose titration with 3DP can offer, especially to more commonly prescribed medications that can have even more harmful withdrawal-induced adverse reactions.


Assuntos
Cafeína , Álcool de Polivinil , Humanos , Cafeína/química , Comprimidos/química , Álcool de Polivinil/química , Tecnologia de Extrusão por Fusão a Quente , Impressão Tridimensional , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos
2.
J Nat Prod ; 86(3): 490-497, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36795946

RESUMO

Cynanchum viminale subsp. australe, more commonly known as caustic vine, is a leafless succulent that grows in the northern arid zone of Australia. Toxicity toward livestock has been reported for this species, along with use in traditional medicine and its potential anticancer activity. Disclosed herein are novel seco-pregnane aglycones cynavimigenin A (5) and cynaviminoside A (6), together with new pregnane glycosides cynaviminoside B (7) and cynavimigenin B (8). Cynavimigenin B (8) contains an unprecedented 7-oxobicyclo[2.2.1]heptane moiety in the seco-pregnane series, likely arising from a pinacol-type rearrangement. Interestingly, these isolates displayed only limited cytotoxicity in cancer and normal human cell lines, in addition to low activity against acetylcholinesterase and Sarcoptes scabiei bioassays, suggesting that 5-8 are not associated with the reported toxicity of this plant species.


Assuntos
Cáusticos , Cynanchum , Humanos , Acetilcolinesterase , Austrália , Glicosídeos/farmacologia , Pregnanos/farmacologia , Raízes de Plantas
3.
ACS Biomater Sci Eng ; 9(6): 2846-2856, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33617219

RESUMO

Coenzyme-Q10 (CoQ10) is a hydrophobic benzoquinone with antioxidant and anti-inflammatory properties. It is known to reduce oxidative stress in various health conditions. However, due to the low solubility, permeability, stability, and poor oral bioavailability, the oral dose of CoQ10 required for the desired therapeutic effect is very high. In the present study, CoQ10 is encapsulated into two milk derived proteins ß-lactoglobulin and lactoferrin (BLG and LF) to produce self-assembled nanostructures of around 100-300 nm with high encapsulation efficiency (5-10% w/w). Both CoQ10-BLG and CoQ10-LF nanoparticles (NPs) significantly improved the aqueous solubility of CoQ10 60-fold and 300-fold, compared to CoQ10 alone, which hardly dissolves in water. Insight into the difference in solubility enhancement between BLG and LF was obtained using in silico modeling, which predicted that LF possesses multiple prospective CoQ10 binding sites, potentially enabling greater loading of CoQ10 on LF compared to BLG, which was predicted to be less capable of binding CoQ10. At pH 7.4, CoQ10-LF NPs showed a burst release between 30 min and 2 h then plateaued at 12 h with 30% of the total drug released over 48 h. However, pure CoQ10-BLG and pure CoQ10 had a significantly lower release rate with less than 15% and 8% cumulative release in 48 h, respectively. Most importantly, both BLG and LF NPs significantly improved CoQ10 permeability compared to the pre-dissolved drug across the Caco-2 monolayer with up to 2.5-fold apparent permeability enhancement for CoQ10-LF─further confirming the utility of this nanoencapsulation approach. Finally, in murine macrophage cells (J774A.1), CoQ10-LF NPs displayed significantly higher anti-ROS properties compared to CoQ10 (predissolved in DMSO) without affecting the cell viability. This study paves the way in improving oral bioavailability of poorly soluble drugs and nutraceuticals using milk-based self-assembled nanoparticles.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Camundongos , Animais , Células CACO-2 , Estudos Prospectivos , Antioxidantes/metabolismo , Nanopartículas/química
4.
J Control Release ; 351: 444-455, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36184971

RESUMO

3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Excipientes/farmacologia , Composição de Medicamentos , Polímeros/farmacologia , Formas de Dosagem , Comprimidos
6.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771442

RESUMO

The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.

7.
Int J Pharm ; 597: 120280, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540004

RESUMO

Meropenem (MER) is one of the last resort antibiotics used to treat resistant bacterial infections. However, the clinical effectiveness of MER is hindered due to chemical instability in aqueous solution and gastric pH, and short plasma half-life. Herein, a novel multi-material delivery system based on γ-cyclodextrin (γ-CD) and poly lactic-co-glycolic acid (PLGA) is demonstrated to overcome these challenges. MER showed a saturated solubility of 14 mg/100 mL in liquid CO2 and later it was loaded into γ-CD to form the inclusion complex using the liquid CO2 method. The γ-CD and MER inclusion complex (MER-γ-CD) was encapsulated into PLGA by the well-established double emulsion solvent evaporation method. The formation of the inclusion complex was confirmed using FTIR, XRD, DSC, SEM, and 1H NMR and docking study. Further, MER-γ-CD loaded PLGA nanoparticles (MER-γ-CD NPs) were characterized by SEM, DLS, and FTIR. The drug loading and entrapment efficiency for MER-γ-CD were 21.9 and 92. 2% w/w, respectively. However, drug loading and entrapment efficiency of MER-γ-CD NPs was significantly lower at up to 3.6 and 42.1% w/w, respectively. In vitro release study showed that 23.6 and 27.4% of active (non-degraded drug) and total drug (both degraded and non-degraded drug) were released from MER-γ-CD NPs in 8 h, respectively. The apparent permeability coefficient (Papp) (A to B) for MER, MER-γ-CD, and MER-γ-CD NPs were 2.63 × 10-6 cm/s, 2.81 × 10-6 cm/s, and 2.92 × 10-6 cm/s, respectively. For secretory transport, the Papp (B to A) were 1.47 × 10-6 cm/s, 1.53 × 10-6 cm/s, and 1.58 × 10-6 cm/s for MER, MER-γ-CD and MER-γ-CD NPs, respectively. Finally, the MER-γ-CD inclusion complex and MER-γ-CD NPs retained MER's antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa. Overall, this work demonstrates the significance of MER-γ-CD NPs to protect MER from gastric pH with controlled drug release, while retaining MER's antibacterial activity.


Assuntos
Nanopartículas , gama-Ciclodextrinas , Portadores de Fármacos , Liberação Controlada de Fármacos , Glicóis , Meropeném , Tamanho da Partícula
8.
Chem Biol Drug Des ; 97(5): 1048-1058, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33455074

RESUMO

Cholinesterase inhibitors remain the mainstay of Alzheimer's disease treatment, and the search for new inhibitors with better efficacy and side effect profiles is ongoing. Virtual screening (VS) is a powerful technique for searching large compound databases for potential hits. This study used a sequential VS workflow combining ligand-based VS, molecular docking and physicochemical filtering to screen for central nervous system (CNS) drug-like acetylcholinesterase inhibitors (AChEIs) amongst the 6.9 million compounds of the CoCoCo database. Eleven in silico hits were initially selected, resulting in the discovery of an AChEI with a Ki of 3.2 µM. In vitro kinetics and in silico molecular dynamics experiments informed the selection of an additional seven analogues. This led to the discovery of two further AChEIs, with Ki values of 2.9 µM and 0.65 µM. All three compounds exhibited reversible, mixed inhibition of acetylcholinesterase. Importantly, the in silico physicochemical filter facilitated the discovery of CNS drug-like compounds, such that all three inhibitors displayed high in vitro blood-brain barrier model permeability.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Sítios de Ligação , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Bases de Dados de Compostos Químicos , Donepezila/química , Donepezila/metabolismo , Donepezila/uso terapêutico , Electrophorus/metabolismo , Cavalos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos
9.
ACS Chem Neurosci ; 12(1): 30-41, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33350300

RESUMO

Alzheimer's disease (AD) is a significant health crisis, and current treatments provide only limited benefits to cognition at the cost of serious side effects. Recently, virtual screening techniques such as ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) have emerged as powerful drug discovery tools for identifying potential ligands of a biological target from a large database of chemical structures. The cholinesterases are an AD target particularly well suited for drug discovery using virtual screening due to their well-characterized active sites and comprehensive understanding of the structure-activity relationships of existing inhibitors. Over the last 5 years (2015-2020), at least 15 studies have used virtual screening techniques to discover potent new cholinesterase inhibitors. Herein we review how LBVS and SBVS have been applied individually or in tandem to discover novel acetylcholinesterase and butyrylcholinesterase inhibitors for AD, and highlight the need to confirm in vitro activity of screening compounds.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular
10.
Bioorg Med Chem Lett ; 30(24): 127609, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039562

RESUMO

Acetylcholinesterase inhibitors are the mainstay of Alzheimer's disease treatments, despite having only short-term symptomatic benefits and severe side effects. Selective butyrylcholinesterase inhibitors (BuChEIs) may be more effective treatments in late-stage Alzheimer's disease with fewer side effects. Virtual screening is a powerful tool for identifying potential inhibitors in large digital compound databases. This study used structure-based virtual screening combined with physicochemical filtering to screen the InterBioScreen and Maybridge databases for novel selective BuChEIs. The workflow rapidly identified 22 potential hits in silico, resulting in the discovery of a human BuChEI with low-micromolar potency in vitro (IC50 2.4 µM) and high selectivity for butyrylcholinesterase over acetylcholinesterase. The compound was a rapidly reversible BuChEI with mixed-model in vitro inhibition kinetics. The binding interactions were investigated using in silico molecular dynamics and by developing structure-activity relationships using nine analogues. The compound also displayed high permeability in an in vitro model of the blood-brain barrier.


Assuntos
Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Descoberta de Drogas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
11.
ACS Chem Neurosci ; 8(9): 1901-1912, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28650631

RESUMO

The biphenyl neolignan honokiol is a neuroprotectant which has been proposed as a treatment for central nervous system disorders such as Alzheimer's disease (AD). The death of cholinergic neurons in AD is attributed to multiple factors, including accumulation and fibrillation of amyloid beta peptide (Aß) within the brain; metal ion toxicity; and oxidative stress. In this study, we used a transgenic Caenorhabditis elegans model expressing full length Aß42 as a convenient in vivo system for examining the effect of honokiol against Aß-induced toxicity. Furthermore, honokiol was evaluated for its ability to inhibit Aß42 oligomerization and fibrillation; inhibit acetylcholinesterase and butyrylcholinesterase; scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals; and chelate iron(II). Honokiol displayed activity similar to that of resveratrol and (-)-epigallocatechin gallate (EGCG) in delaying Aß42-induced paralysis in C. elegans, and it exhibited moderate-to-weak ability to inhibit Aß42 on-pathway aggregation, inhibit cholinesterases, scavenge DPPH radicals, and chelate iron(II). Moreover, honokiol was found to be chemically stable relative to EGCG, which was highly unstable. Together with its good drug-likeness and brain availability, these results suggest that honokiol may be amenable to drug development and that the synthesis of honokiol analogues to optimize these properties should be considered.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Compostos de Bifenilo/farmacologia , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , Sequestradores de Radicais Livres/farmacologia , Lignanas/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Caenorhabditis elegans , Catequina/análogos & derivados , Catequina/farmacologia , Quelantes/química , Inibidores da Colinesterase/química , Estabilidade de Medicamentos , Sequestradores de Radicais Livres/química , Humanos , Ferro/química , Ferro/metabolismo , Lignanas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Paralisia/tratamento farmacológico , Paralisia/metabolismo , Picratos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Resveratrol , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA