Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1378610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638436

RESUMO

Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.


Assuntos
Aspirina/análogos & derivados , Vírus da Influenza A , Influenza Humana , Nitratos , Pré-Eclâmpsia , Doenças Vasculares , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Aspirina/farmacologia , Inflamação , Aorta
2.
Environ Toxicol Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661474

RESUMO

Risk assessment for bees is mainly based on data for honey bees; however, risk assessment is intended to protect all bee species. This raises the question of whether data for honey bees are a good proxy for other bee species. This issue is not new and has resulted in several publications in which the sensitivity of bee species is compared based on the values of the 48-h median lethal dose (LD50) from acute test results. When this approach is used, observed differences in sensitivity may result both from differences in kinetics and from inherent differences in species sensitivity. In addition, the physiology of the bee, like its overall size, the size of the honey stomach (for acute oral tests), and the physical appearance (for acute contact tests) also influences the sensitivity of the bee. The recently introduced Toxicokinetic-Toxicodynamic (TKTD) model that was developed for the interpretation of honey bee tests (Bee General Uniform Threshold Model for Survival [BeeGUTS]) could integrate the results of acute oral tests, acute contact tests, and chronic tests within one consistent framework. We show that the BeeGUTS model can be calibrated and validated for other bee species and also that the honey bee is among the more sensitive bee species. In addition, we found that differences in sensitivity between species are smaller than previously published comparisons based on 48-h LD50 values. The time-dependency of the LD50 and the specifics of the bee physiology are the main causes of the wider variation found in the published literature. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Cancer Lett ; 585: 216639, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290660

RESUMO

The highly heterogenous nature of colorectal cancer can significantly hinder its early and accurate diagnosis, eventually contributing to high mortality rates. The adenoma-carcinoma sequence and serrated polyp-carcinoma sequence are the two most common sequences in sporadic colorectal cancer. Genetic alterations in adenomatous polyposis coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumour protein 53 (TP53) genes are critical in adenoma-carcinoma sequence, whereas v-Raf murine sarcoma viral oncogene homolog B (BRAF) and MutL Homolog1 (MLH1) are driving oncogenes in the serrated polyp-carcinoma sequence. Sporadic mutations in these genes contribute differently to colorectal cancer pathogenesis by introducing distinct alterations in several signalling pathways that rely on the endosome-lysosome system. Unsurprisingly, the endosome-lysosome system plays a pivotal role in the hallmarks of cancer and contributes to specialised colon function. Thus, the endosome-lysosome system might be distinctively influenced by different mutations and these alterations may contribute to the heterogenous nature of sporadic colorectal cancer. This review highlights potential connections between major sporadic colorectal cancer mutations and the diverse pathogenic mechanisms driven by the endosome-lysosome system in colorectal carcinogenesis.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Adenoma/patologia
4.
Cells ; 13(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201300

RESUMO

Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.


Assuntos
Neoplasias da Próstata , Receptor Toll-Like 9 , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Carcinogênese , Próstata , Transformação Celular Neoplásica
5.
Front Immunol ; 14: 1240552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795093

RESUMO

Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.


Assuntos
Asma , Infecções por Vírus Respiratório Sincicial , Receptor 7 Toll-Like , Animais , Camundongos , Brônquios/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/genética , Camundongos Knockout
6.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524969

RESUMO

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Assuntos
Proteínas Inibidoras de Apoptose , Tiazóis , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G230-G238, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431584

RESUMO

Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.


Assuntos
Vírus da Influenza A , Influenza Humana , Gravidez , Feminino , Camundongos , Animais , Humanos , Nódulos Linfáticos Agregados , Imunidade nas Mucosas , Linfócitos T CD8-Positivos
8.
Environ Toxicol Chem ; 42(8): 1839-1850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204212

RESUMO

To assess the effect of plant protection products on pollinator colonies, the higher tier of environmental risk assessment (ERA), for managed honey bee colonies and other pollinators, is in need of a mechanistic effect model. Such models are seen as a promising solution to the shortcomings, which empirical risk assessment can only overcome to a certain degree. A recent assessment of 40 models conducted by the European Food Safety Authority (EFSA) revealed that BEEHAVE is currently the only publicly available mechanistic honey bee model that has the potential to be accepted for ERA purposes. A concern in the use of this model is a lack of model validation against empirical data, spanning field studies conducted in different regions of Europe and covering the variability in colony and environmental conditions. We filled this gap with a BEEHAVE validation study against 66 control colonies of field studies conducted across Germany, Hungary, and the United Kingdom. Our study implements realistic initial colony size and landscape structure to consider foraging options. Overall, the temporal pattern of colony strength is predicted well. Some discrepancies between experimental data and prediction outcomes are explained by assumptions made for model parameterization. Complementary to the recent EFSA study using BEEHAVE, our validation covers a large variability in colony conditions and environmental impacts representing the Northern and Central European Regulatory Zones. Thus we believe that BEEHAVE can be used to serve the development of specific protection goals as well as the development of simulation scenarios for the European Regulatory Zone. Subsequently, the model can be applied as a standard tool for higher tier ERA of managed honey bees using the mechanistic ecotoxicological module for BEEHAVE, BEEHAVEecotox . Environ Toxicol Chem 2023;42:1839-1850. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Meio Ambiente , Inocuidade dos Alimentos , Abelhas , Animais , Europa (Continente) , Simulação por Computador , Alemanha
9.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009206

RESUMO

Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-ß expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-ß response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-ß increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages.

10.
PLoS Pathog ; 18(8): e1010703, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930608

RESUMO

Influenza A virus (IAV) infection during pregnancy initiates significant aortic endothelial and vascular smooth muscle dysfunction, with inflammation and T cell activation, but the details of the mechanism are yet to be clearly defined. Here we demonstrate that IAV disseminates preferentially into the perivascular adipose tissue (PVAT) of the aorta in mice. IAV mRNA levels in the PVAT increased at 1-3 days post infection (d.p.i) with the levels being ~4-8 fold higher compared with the vessel wall. IAV infection also increased Ly6Clow patrolling monocytes and Ly6Chigh pro-inflammatory monocytes in the vessel wall at 3 d.p.i., which was then followed by a greater homing of these monocytes into the PVAT at 6 d.p.i. The vascular immune phenotype was characteristic of a "vascular storm"- like response, with increases in neutrophils, pro-inflammatory cytokines and oxidative stress markers in the PVAT and arterial wall, which was associated with an impairment in endothelium-dependent relaxation to acetylcholine. IAV also triggered a PVAT compartmentalised elevation in CD4+ and CD8+ activated T cells. In conclusion, the PVAT of the aorta is a niche that supports IAV dissemination and a site for perpetuating a profound innate inflammatory and adaptive T cell response. The manifestation of this inflammatory response in the PVAT following IAV infection may be central to the genesis of cardiovascular complications arising during pregnancy.


Assuntos
Vírus da Influenza A , Tecido Adiposo , Animais , Aorta , Endotélio Vascular , Feminino , Inflamação/genética , Camundongos , Gravidez
11.
Environ Toxicol Chem ; 41(9): 2193-2201, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770718

RESUMO

Understanding the survival of honey bees after pesticide exposure is key for environmental risk assessment. Currently, effects on adult honey bees are assessed by Organisation for Economic Co-operation and Development standardized guidelines, such as the acute and chronic oral exposure and acute contact exposure tests. The three different tests are interpreted individually, without consideration that the same compound is investigated in the same species, which should allow for an integrative assessment. In the present study we developed, calibrated, and validated a toxicokinetic-toxicodynamic model with 17 existing data sets on acute and chronic effects for honey bees. The model is based on the generalized unified threshold model for survival (GUTS), which is able to integrate the different exposure regimes, taking into account the physiology of the honey bee: the BeeGUTS model. The model is able to accurately describe the effects over time for all three exposure routes combined within one consistent framework. The model can also be used as a validity check for toxicity values used in honey bee risk assessment and to conduct effect assessments for real-life exposure scenarios. This new integrative approach, moving from single-point estimates of toxicity and exposure to a holistic link between exposure and effect, will allow for a higher confidence of honey bee toxicity assessment in the future. Environ Toxicol Chem 2022;41:2193-2201. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Animais , Abelhas , Praguicidas/toxicidade , Medição de Risco , Toxicocinética
12.
Front Pharmacol ; 13: 870156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401240

RESUMO

There is an urgent need to develop effective therapeutic strategies including immunomodulators to combat influenza A virus (IAV) infection. Influenza A viruses increase ROS production, which suppress anti-viral responses and contribute to pathological inflammation and morbidity. Two major cellular sites of ROS production are endosomes via the NOX2-oxidase enzyme and the electron transport chain in mitochondria. Here we examined the effect of administration of Cgp91ds-TAT, an endosome-targeted NOX2 oxidase inhibitor, in combination with mitoTEMPO, a mitochondrial ROS scavenger and compared it to monotherapy treatment during an established IAV infection. Mice were infected with IAV (Hkx31 strain; 104PFU/mouse) and 24 h post infection were treated with Cgp91ds-TAT (0.2 mg/kg), mitoTEMPO (100 µg) or with a combination of these inhibitors [Cgp91ds-TAT (0.2 mg/kg)/mitoTEMPO (100 µg)] intranasally every day for up to 2 days post infection (pi). Mice were euthanized on Days 3 or 6 post infection for analyses of disease severity. A combination of Cgp91ds-TAT and mitoTEMPO treatment was more effective than the ROS inhibitors alone at reducing airway and neutrophilic inflammation, bodyweight loss, lung oedema and improved the lung pathology with a reduction in alveolitis following IAV infection. Dual ROS inhibition also caused a significant elevation in Type I IFN expression at the early phase of infection (day 3 pi), however, this response was suppressed at the later phase of infection (day 6 pi). Furthermore, combined treatment with Cgp91ds-TAT and mitoTEMPO resulted in an increase in IAV-specific CD8+ T cells in the lungs. In conclusion, this study demonstrates that the reduction of ROS production in two major subcellular sites, i.e. endosomes and mitochondria, by intranasal delivery of a combination of Cgp91ds-TAT and mitoTEMPO, suppresses the severity of influenza infection and highlights a novel immunomodulatory approach for IAV disease management.

13.
Clin Exp Metastasis ; 38(5): 441-449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34398333

RESUMO

Osteosarcoma is the most common form of primary bone cancer and frequently metastasizes to the lungs. Current therapies fail to successfully treat over two thirds of patients with metastatic osteosarcoma, so there is an urgent imperative to develop therapies that effectively target established metastases. Smac mimetics are drugs that work by inhibiting the pro-survival activity of IAP proteins such as cIAP1 and cIAP2, which can be overexpressed in osteosarcomas. In vitro, osteosarcoma cells are sensitive to a range of Smac mimetics in combination with TNFα. This sensitivity has also been demonstrated in vivo using the Smac mimetic LCL161, which inhibited the growth of subcutaneous and intramuscular osteosarcomas. Here, we evaluated the efficacy of LCL161 using mice bearing osteosarcoma metastases without the presence of a primary tumor, modeling the scenario in which a patient's primary tumor had been surgically removed. We demonstrated the ability of LCL161 as a single agent and in combination with doxorubicin to inhibit the growth of, and in some cases eliminate, established pulmonary osteosarcoma metastases in vivo. Resected lung metastases from treated and untreated mice remained sensitive to LCL161 in combination with TNFα ex vivo. This suggested that there was little to no acquired resistance to LCL161 treatment in surviving osteosarcoma cells and implied that tumor microenvironmental factors underlie the observed variation in responses to LCL161.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Pulmonares/secundário , Osteossarcoma/secundário , Tiazóis/uso terapêutico , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200309

RESUMO

Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.


Assuntos
Morte Celular , Dano ao DNA , Mutagênese , Mutação , Neoplasias/patologia , Animais , Humanos , Neoplasias/etiologia
15.
Cell Death Dis ; 11(8): 680, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32826875

RESUMO

Most anticancer drugs provoke apoptotic signaling by damaging DNA or other means. Genotoxic therapies may enhance a patient's risk of developing "therapy-related cancers" due to the accumulation of oncogenic mutations that may occur in noncancerous cells. Mutations can also form upon apoptotic signaling due to sublethal caspase activity, implying that apoptosis activating drugs may also be oncogenic. Necroptosis is a different way of killing cancer cells: this version of caspase-independent cell death is characterized by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase-like domain protein (MLKL) activation, leading to cell membrane rupture and controlled cell lysis. The mutagenic potential of sublethal necroptotic signaling has not yet been directly investigated. Smac mimetics drugs, which activate apoptotic or necroptotic cell death, do not induce mutations but the mechanistic basis for this lack of mutagenic activity has not been determined. In this study, we compared the mutagenic potential of these two cell death pathways by engineering cells to activate either apoptotic or necroptotic signaling by exposing them to Smac mimetics with or without TNFα, and/or enforcing or preventing expression of apoptotic or necroptotic regulators. We discovered that sublethal concentrations of Smac mimetics in contexts that activated apoptotic signaling provoked DNA damage and mutations in surviving cells. Mutagenesis was dependent on executioner caspase activation of the nuclease CAD. In contrast, RIPK3- and MLKL-dependent necroptotic signaling following Smac mimetic treatment was not mutagenic. Likewise, DNA damage was not provoked in cells expressing a lethal constitutively active MLKL mutant. These data reveal that cells surviving sublethal necroptotic signaling do not sustain genomic damage and provide hope for a reduced risk of therapy-related malignancies in patients treated with necroptosis-inducing drugs.


Assuntos
Dano ao DNA/genética , Hipoxantina Fosforribosiltransferase/genética , Mutação/genética , Necroptose/genética , Transdução de Sinais , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Mutagênese/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serpinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células U937 , Proteínas Virais/metabolismo
16.
Mol Biol Rep ; 47(6): 4849-4856, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424523

RESUMO

High throughput cell viability screening assays often capitalize on the ability of active enzymes or molecules within viable cells to catalyze a quantifiable chemical reaction. The tetrazolium reduction (MTT) assay relies on oxidoreductases to reduce tetrazolium into purple formazan crystals that are solubilized so absorbance reflects viability, while other assays use cellular ATP to catalyze a luminescence-emitting reaction. It is therefore important to know how accurately these assays report cellular responses, as cytotoxic anti-cancer agents promote cell death via a variety of signaling pathways, some of which may alter how these assays work. In this study, we compared the magnitude of cytotoxicity to different cell types provoked by currently used anti-cancer agents, using three different cell viability assays. We found the three assays were consistent in reporting the viability of cells treated with chemotherapy drugs or the BH3 mimetic navitoclax, but the MTT assay underreported the killing capacity of proteasome inhibitors. Additionally, the MTT assay failed to confirm the induction of caspase-mediated cell death by bortezomib at physiologically relevant concentrations, thereby mischaracterizing the mode of cell death. While the cell viability assays used allow for the rapid identification of novel cytotoxic compounds, our study emphasizes the importance for these screening assays to be complemented with a direct measure of cell death or another independent measure of cell viability. We caution researchers against using MTT assays for monitoring cytotoxicity induced by proteasome inhibitors.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , NADH Tetrazólio Redutase/metabolismo , Sais de Tetrazólio/metabolismo , Antineoplásicos/farmacologia , Bioensaio , Caspases/metabolismo , Catálise , Morte Celular/efeitos dos fármacos , Formazans/química , Formazans/farmacologia , Humanos , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Sais de Tetrazólio/química , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
17.
Apoptosis ; 25(7-8): 500-518, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32440848

RESUMO

Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.


Assuntos
Antineoplásicos/farmacologia , Azocinas/farmacologia , Compostos Benzidrílicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Oligopeptídeos/farmacologia , Triazóis/farmacologia , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Imidazóis/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mimetismo Molecular , Necroptose/efeitos dos fármacos , Necroptose/genética , Fenilenodiaminas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
18.
Cancers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403415

RESUMO

Osteosarcoma is the most common form of primary bone cancer. Over 20% of osteosarcoma patients present with pulmonary metastases at diagnosis, and nearly 70% of these patients fail to respond to treatment. Previous work revealed that human and canine osteosarcoma cell lines are extremely sensitive to the therapeutic proteasome inhibitor bortezomib in vitro. However, bortezomib has proven disappointingly ineffective against solid tumors including sarcomas in animal experiments and clinical trials. Poor tumor penetration has been speculated to account for the inconsistency between in vitro and in vivo responses of solid tumors to bortezomib. Here we show that the second-generation proteasome inhibitor ixazomib, which reportedly has enhanced solid tumor penetration compared to bortezomib, is toxic to human and canine osteosarcoma cells in vitro. We used experimental osteosarcoma metastasis models to compare the efficacies of ixazomib and bortezomib against primary tumors and metastases derived from luciferase-expressing KRIB or 143B human osteosarcoma cell lines in athymic mice. Neither proteasome inhibitor reduced the growth of primary intramuscular KRIB tumors, however both drugs inhibited the growth of established pulmonary metastases created via intravenous inoculation with KRIB cells, which were significantly better vascularized than the primary tumors. Only ixazomib slowed metastases from KRIB primary tumors and inhibited the growth of 143B pulmonary and abdominal metastases, significantly enhancing the survival of mice intravenously injected with 143B cells. Taken together, these results suggest ixazomib exerts better single agent activity against osteosarcoma metastases than bortezomib. These data provide hope that incorporation of ixazomib, or other proteasome inhibitors that penetrate efficiently into solid tumors, into current regimens may improve outcomes for patients diagnosed with metastatic osteosarcoma.

19.
J Adolesc Young Adult Oncol ; 9(6): 667-671, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397787

RESUMO

Two thirds of metastatic osteosarcoma patients die within 5 years of diagnosis. Improved experimental models of osteosarcoma metastasis will facilitate the development of more effective therapies. Intravenous cancer cell injection can produce lung metastases in nude mice, but this "experimental metastasis" technique has been predominantly applied to a single osteosarcoma cell line (143B) and required injection of 1-2 million cells. Using two human osteosarcoma cell lines, we discovered that transient Natural Killer cell depletion dramatically enhanced the efficiency of experimental pulmonary osteosarcoma metastasis. This technique for modeling osteosarcoma metastasis may enable the identification of better treatments for this aggressive cancer.


Assuntos
Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/terapia , Administração Intravenosa , Animais , Feminino , Camundongos , Camundongos Nus
20.
Cell Rep ; 29(7): 1821-1831.e3, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722200

RESUMO

Billions of cells undergo apoptosis daily and often fragment into small, membrane-bound extracellular vesicles termed apoptotic bodies (ApoBDs). We demonstrate that apoptotic monocytes undergo a highly coordinated disassembly process and form long, beaded protrusions (coined as beaded apoptopodia), which fragment to release ApoBDs. Here, we find that the protein plexin B2 (PlexB2), a transmembrane receptor that regulates axonal guidance in neurons, is enriched in the ApoBDs of THP1 monocytes and is a caspase 3/7 substrate. To determine whether PlexB2 is involved in the disassembly of apoptotic monocytes, we generate PlexB2-deficient THP1 monocytes and demonstrate that lack of PlexB2 impairs the formation of beaded apoptopodia and ApoBDs. Consequently, the loss of PlexB2 in apoptotic THP1 monocytes impairs their uptake by both professional and non-professional phagocytes. Altogether, these data identify PlexB2 as a positive regulator of apoptotic monocyte disassembly and demonstrate the importance of this process in apoptotic cell clearance.


Assuntos
Apoptose , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células A549 , Animais , Células HeLa , Humanos , Camundongos , Monócitos/citologia , Proteínas do Tecido Nervoso/genética , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA