Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 57(5): 1014-1023, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930685

RESUMO

OBJECTIVE: To define the potential of polycaprolactone (PCL) scaffold for cementoblast delivery. BACKGROUND: Dental cementum is critical for tooth attachment and position, and its regenerative capabilities remain unpredictable. METHODS: PCL scaffolds were manufactured by the electrospinning technique at 10% and 20% (w/v) and seeded with cementoblasts (OCCM-30). Scaffolds were characterized for their morphology and biological performance by scanning electron microscopy (SEM), confocal and conventional histology, cytocompatibility (PrestoBlue assay), gene expression (type I collagen - Col1; bone sialoprotein - Bsp; runt-related transcription factor 2 - Runx-2; alkaline phosphatase - Alpl; osteopontin - Opn; osteocalcin - Ocn, osterix - Osx), and the potential to induce extracellular matrix deposition and mineralization in vitro. RESULTS: Overall, data analysis showed that PCL scaffolds allowed cell adhesion and proliferation, modulated the expression of key markers of cementoblasts, and led to enhanced extracellular matrix deposition and calcium deposition as compared to the control group. CONCLUSION: Altogether, our findings allow concluding that PCL scaffolds are a viable tool to culture OCCM-30 cells, leading to an increased potential to promote mineralization in vitro. Further studies should be designed in order to define the clinical relevance of cementoblast-loaded PCL scaffolds to promote new cementum formation.


Assuntos
Materiais Biocompatíveis , Cemento Dentário , Diferenciação Celular , Sialoproteína de Ligação à Integrina/metabolismo , Poliésteres , Alicerces Teciduais
2.
Altern Lab Anim ; 50(2): 156-171, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35410493

RESUMO

The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.


Assuntos
Experimentação Animal , Alternativas aos Testes com Animais , Alternativas aos Testes com Animais/métodos , Bem-Estar do Animal , Animais , Humanos , Índia , Modelos Animais
3.
Biotechniques ; 57(3): 137-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25209048

RESUMO

Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.


Assuntos
Técnicas de Cultura de Células/métodos , Corantes/química , Platina/química , Alicerces Teciduais , Linhagem Celular , Técnicas Eletroquímicas , Fibroblastos/citologia , Humanos , Ácido Láctico , Microscopia Eletrônica de Varredura , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA