Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Antioxidants (Basel) ; 10(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535682

RESUMO

Epithelial-mesenchymal transition (EMT), a key event in cancer metastasis, allows polarized epithelial cells to assume mesenchymal morphologies, enhancing invasiveness and migration, and can be induced by reactive oxygen species (ROS). Val16A (Ala) SOD2 polymorphism has been associated with increased prostate cancer (PCa) risk. We hypothesized that SOD2 Ala single nucleotide polymorphism (SNP) may promote EMT. We analyzed SOD2 expression and genotype in various prostate cell lines. Stable overexpression of Ala-SOD2 or Val-SOD2 allele was performed in Lymph Node Carcinoma of the Prostate (LNCaP) cells followed by analysis of intracellular ROS and EMT marker protein expression. Treatments were performed with muscadine grape skin extract (MSKE) antioxidant, with or without addition of H2O2 to provide further oxidative stress. Furthermore, MTS cell proliferation, cell migration, and apoptosis assays were completed. The results showed that SOD2 expression did not correlate with tumor aggressiveness nor SOD2 genotype. We demonstrated that the Ala-SOD2 allele was associated with marked induction of EMT indicated by higher Snail and vimentin, lower E-cadherin, and increased cell migration, when compared to Val-SOD2 allele or Neo control cells. Ala-SOD2 SNP cells exhibited increased levels of total ROS and superoxide and were more sensitive to co-treatment with H2O2 and MSKE, which led to reduced cell growth and increased apoptosis. Additionally, MSKE inhibited Ala-SOD2 SNP-mediated EMT. Our data indicates that treatment with a combination of H2O2-generative drugs, such as certain chemotherapeutics and antioxidants such as MSKE that targets superoxide, hold promising therapeutic potential to halt PCa progression in the future.

2.
Cancer Lett ; 448: 155-167, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30763715

RESUMO

JunD, a member of the AP-1 family, is essential for cell proliferation in prostate cancer (PCa) cells. We recently demonstrated that JunD knock-down (KD) in PCa cells results in cell cycle arrest in G1-phase concomitant with a decrease in cyclin D1, Ki67, and c-MYC, but an increase in p21 levels. Furthermore, the over-expression of JunD significantly increased proliferation suggesting JunD regulation of genes required for cell cycle progression. Here, employing gene expression profiling, quantitative proteomics, and validation approaches, we demonstrate that JunD KD is associated with distinct gene and protein expression patterns. Comparative integrative analysis by Ingenuity Pathway Analysis (IPA) identified 1) cell cycle control/regulation as the top canonical pathway whose members exhibited a significant decrease in their expression following JunD KD including PRDX3, PEA15, KIF2C, and CDK2, and 2) JunD dependent genes are associated with cell proliferation, with MYC as the critical downstream regulator. Conversely, JunD over-expression induced the expression of the above genes including c-MYC. We conclude that JunD is a crucial regulator of cell cycle progression and inhibiting its target genes may be an effective approach to block prostate carcinogenesis.


Assuntos
Proliferação de Células/fisiologia , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-jun/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Transdução de Sinais/fisiologia
3.
J Biol Chem ; 291(34): 17964-76, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358408

RESUMO

TGF-ß inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-ß. The intracellular signaling mechanisms involved in differential effects of TGF-ß during different stages are largely unknown. Using cell line models, we have shown that TGF-ß inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-ß effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-ß treatment. TGF-ß effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-ß induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-ß treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-ß, and inhibition of cell proliferation by TGF-ß requires degradation of JunD protein.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-jun/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genética
4.
Genome ; 49(4): 306-19, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16699550

RESUMO

In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.


Assuntos
Etiquetas de Sequências Expressas/química , Marcadores Genéticos , Gossypium/genética , Repetições Minissatélites/genética , Estruturas Vegetais/genética , Mapeamento Cromossômico/métodos , Sequência Consenso/genética , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Genes de Plantas , Ligação Genética , Estruturas Vegetais/microbiologia , Polimorfismo Genético , Xanthomonas campestris/patogenicidade
5.
Mol Cell Endocrinol ; 224(1-2): 29-39, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15353178

RESUMO

We have determined the effects of LH on the expression of transforming growth factor-alpha (TGFalpha) and epidermal growth factor receptor (EGFR) system in rat Leydig cells and investigated its role in steroidogenesis. LH and TGFalpha/epidermal growth factor (EGF) significantly increased the levels of TGFalpha mRNA and protein, and the levels of EGFR protein in immature rat Leydig cells (ILC). Treatment with TGFalpha or EGF for 24h resulted in significant increase in androgen production in ILC. The increase in androgen production in response to TGFalpha was associated with increased mRNA levels of SR-BI, steroidogenic acute regulatory (StAR) and P450scc but not of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and P450c17. TGFalpha also caused a marked increase in the levels StAR protein in ILC. EGFR inhibitor (AG1478) blocked the effects of TGFalpha while MEK-inhibitor (PD98059) potentiated TGFalpha or LH effects on steroidogenesis. A PKA inhibitor (H89) blocked both TGFalpha and LH effects on steroidogenesis. We conclude that TGFalpha plays an autocrine role in LH dependent development and function of Leydig cells.


Assuntos
Androgênios/biossíntese , Comunicação Autócrina , Células Intersticiais do Testículo/fisiologia , Hormônio Luteinizante/fisiologia , Esteroides/biossíntese , Fator de Crescimento Transformador alfa/fisiologia , Animais , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/análise , Receptores ErbB/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica , Isoquinolinas/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Quinazolinas , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Sulfonamidas/farmacologia , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/farmacologia , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA