Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586031

RESUMO

Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.

2.
Annu Rev Microbiol ; 76: 389-411, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650669

RESUMO

Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cellsurfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber-associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements.


Assuntos
Bacteriófagos , Retroelementos , Proteínas de Bactérias/genética , Bacteriófagos/genética , Evolução Molecular , Variação Genética , Ligantes
3.
ACS Nano ; 15(4): 5793-5818, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793189

RESUMO

At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Pandemias , SARS-CoV-2 , Vacinação
4.
Nat Commun ; 12(1): 1907, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772012

RESUMO

Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.


Assuntos
Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Fatores de Virulência/genética , Animais , Burkholderia pseudomallei/citologia , Burkholderia pseudomallei/patogenicidade , Linhagem Celular Tumoral , Membrana Celular/microbiologia , Citoplasma/microbiologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Análise de Célula Única/métodos , Vacúolos/microbiologia , Virulência/genética
5.
Bone Res ; 8(1): 43, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303744

RESUMO

Extremity reconstruction surgery is increasingly performed rather than amputation for patients with large-segment pathologic bone loss. Debate persists as to the optimal void filler for this "limb salvage" surgery, whether metal or allograft bone. Clinicians focus on optimizing important functional gains for patients, and the risk of devastating implant infection has been thought to be similar regardless of implant material. Recent insights into infection pathophysiology are challenging this equipoise, however, with both basic science data suggesting a novel mechanism of infection of Staphylococcus aureus (the most common infecting agent) into the host lacunar-canaliculi network, and also clinical data revealing a higher rate of infection of allograft over metal. The current translational study was therefore developed to bridge the gap between these insights in a longitudinal murine model of infection of allograft bone and metal. Real-time Staphylococci infection characteristics were quantified in cortical bone vs metal, and both microarchitecture of host implant and presence of host immune response were assessed. An orders-of-magnitude higher bacterial burden was established in cortical allograft bone over both metal and cancellous bone. The establishment of immune-evading microabscesses was confirmed in both cortical allograft haversian canal and the submicron canaliculi network in an additional model of mouse femur bone infection. These study results reveal a mechanism by which Staphylococci evasion of host immunity is possible, contributing to elevated risks of infection in cortical bone. The presence of this local infection reservoir imparts massive clinical implications that may alter the current paradigm of osteomyelitis and bulk allograft infection treatment.

6.
BMC Genomics ; 21(1): 664, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977771

RESUMO

BACKGROUND: Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for adaptation to environmental stress. Some cyanobacterial genomes have been noted to encode diversity-generating retroelements (DGRs), which promote protein hypervariation through localized retrohoming and codon rewriting in target genes. Past research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or viral-host attachment within viral, bacterial, and archaeal lineages. However, these elements may be critical in driving variation for proteins involved in other core cellular processes. RESULTS: Members of 31 cyanobacterial genera encode at least one DGR, and together, their retroelements form a monophyletic clade of closely-related reverse transcriptases. This class of retroelements diversifies target proteins with unique domain architectures: modular ligand-binding domains often paired with a second domain that is linked to signal response or regulation. Comparative analysis indicates recent intragenomic duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR components. The prevalence of DGRs and the paralogs of their targets is disproportionately high among colonial and filamentous strains of cyanobacteria. CONCLUSION: We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a ligand-binding module for apparent function in signal response or regulation. These represent a unique class of hypervariable proteins, which might offer cyanobacteria a form of plasticity to adapt to environmental stress. This analysis supports the hypothesis that DGR-driven mutation modulates signaling and regulatory networks in cyanobacteria, suggestive of a new framework for the utility of localized genetic hypervariation.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Variação Genética , Retroelementos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Mutagênese , Ligação Proteica , Domínios Proteicos
7.
Nature ; 580(7805): 658-662, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350467

RESUMO

R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics1-4. Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold1,2. Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage5. Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes; the dissociation then initiates a cascade of events leading to sheath contraction; and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


Assuntos
Pseudomonas aeruginosa , Piocinas/química , Piocinas/metabolismo , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Genes Bacterianos/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Especificidade por Substrato , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(37): 18597-18606, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439817

RESUMO

Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell-cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reposicionamento de Medicamentos , Flucitosina/farmacologia , Melioidose/tratamento farmacológico , Animais , Burkholderia pseudomallei/patogenicidade , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Citoplasma/efeitos dos fármacos , Citoplasma/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Flucitosina/uso terapêutico , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Melioidose/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Virulência
11.
Bioorg Med Chem Lett ; 29(18): 2686-2689, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383589

RESUMO

gem-Disubstituted N-heterocycles are rarely found in drugs, despite their potential to improve the drug-like properties of small molecule pharmaceuticals. Linezolid, a morpholine heterocycle-containing oxazolidinone antibiotic, exhibits significant side effects associated with human mitochondrial protein synthesis inhibition. We synthesized a gem-disubstituted linezolid analogue that when compared to linezolid, maintains comparable (albeit slightly diminished) activity against bacteria, comparable in vitro physicochemical properties, and a decrease in undesired mitochondrial protein synthesis (MPS) inhibition. This research contributes to the structure-activity-relationship data surrounding oxazolidinone MPS inhibition, and may inspire investigations into the utility of gem-disubstituted N-heterocycles in medicinal chemistry.


Assuntos
Antibacterianos/farmacologia , Compostos Heterocíclicos/farmacologia , Linezolida/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Humanos , Linezolida/síntese química , Linezolida/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
12.
Lancet Planet Health ; 2(8): e334-e343, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30082048

RESUMO

BACKGROUND: Burkholderia pseudomallei is the cause of melioidosis, a serious and difficult to treat infection that is endemic throughout the tropics. Melioidosis incidence is highly seasonal. We aimed to identify the climatic drivers of infection and to shed light on modes of transmission and potential preventive strategies. METHODS: We examined the records of patients diagnosed with melioidosis at the Microbiology Laboratory of Mahosot Hospital in Vientiane, Laos, between October, 1999, and August, 2015, and all patients with culture-confirmed melioidosis presenting to the Angkor Hospital for Children in Siem Reap, Cambodia, between February, 2009, and December, 2013. We also examined local temperature, humidity, precipitation, visibility, and wind data for the corresponding time periods. We estimated the B pseudomallei incubation period by examining profile likelihoods for hypothetical exposure-to-presentation delays. FINDINGS: 870 patients were diagnosed with melioidosis in Laos and 173 patients were diagnosed with melioidosis in Cambodia during the study periods. Melioidosis cases were significantly associated with humidity (p<0·0001), low visibility (p<0·0001), and maximum wind speeds (p<0·0001) in Laos, and humidity (p=0·010), rainy days (p=0·015), and maximum wind speed (p=0·0070) in Cambodia. Compared with adults, children were at significantly higher odds of infection during highly humid months (odds ratio 2·79, 95% CI 1·83-4·26). Lung and disseminated infections were more common during windy months. The maximum likelihood estimate of the incubation period was 1 week (95% CI 0-2). INTERPRETATION: The results of this study demonstrate a significant seasonal burden of melioidosis among adults and children in Laos and Cambodia. Our findings highlight the risks of infection during highly humid and windy conditions, and suggest a need for increased awareness among at-risk individuals, such as children. FUNDING: Wellcome Trust.


Assuntos
Burkholderia pseudomallei/fisiologia , Clima , Melioidose/epidemiologia , Tempo (Meteorologia) , Adulto , Idoso , Idoso de 80 Anos ou mais , Camboja/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Incidência , Laos/epidemiologia , Funções Verossimilhança , Masculino , Melioidose/microbiologia , Pessoa de Meia-Idade , Adulto Jovem
13.
Nucleic Acids Res ; 46(18): 9711-9725, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007279

RESUMO

Diversity-generating retroelements (DGRs) create unparalleled levels of protein sequence variation through mutagenic retrohoming. Sequence information is transferred from an invariant template region (TR), through an RNA intermediate, to a protein-coding variable region. Selective infidelity at adenines during transfer is a hallmark of DGRs from disparate bacteria, archaea, and microbial viruses. We recapitulated selective infidelity in vitro for the prototypical Bordetella bacteriophage DGR. A complex of the DGR reverse transcriptase bRT and pentameric accessory variability determinant (Avd) protein along with DGR RNA were necessary and sufficient for synthesis of template-primed, covalently linked RNA-cDNA molecules, as observed in vivo. We identified RNA-cDNA molecules to be branched and most plausibly linked through 2'-5' phosphodiester bonds. Adenine-mutagenesis was intrinsic to the bRT-Avd complex, which displayed unprecedented promiscuity while reverse transcribing adenines of either DGR or non-DGR RNA templates. In contrast, bRT-Avd processivity was strictly dependent on the template, occurring only for the DGR RNA. This restriction was mainly due to a noncoding segment downstream of TR, which specifically bound Avd and created a privileged site for processive polymerization. Restriction to DGR RNA may protect the host genome from damage. These results define the early steps in a novel pathway for massive sequence diversification.


Assuntos
Adenina/metabolismo , Bacteriófagos/fisiologia , DNA Complementar/genética , DNA Polimerase Dirigida por RNA/fisiologia , Retroelementos/fisiologia , Moldes Genéticos , Bordetella/virologia , DNA Complementar/metabolismo , Variação Genética/efeitos dos fármacos , Variação Genética/fisiologia , Mutagênese Insercional/métodos , Mutagênese Sítio-Dirigida/métodos , Mutagênicos/metabolismo , Mutagênicos/farmacologia , DNA Polimerase Dirigida por RNA/metabolismo
14.
BMC Microbiol ; 18(1): 19, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490612

RESUMO

BACKGROUND: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. RESULTS: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. CONCLUSIONS: Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Queijo/virologia , Genoma Viral , Filogenia , Propionibacterium acnes/virologia , Propionibacterium freudenreichii/virologia , Bacteriófagos/ultraestrutura , Composição de Bases , Sequência de Bases , Queijo/microbiologia , Mapeamento Cromossômico , Variação Genética , Genômica , Especificidade de Hospedeiro , Lisogenia , Anotação de Sequência Molecular , Prófagos/genética , Propionibacteriaceae/virologia , Propionibacterium/virologia , Sequenciamento Completo do Genoma
15.
Nucleic Acids Res ; 46(1): 11-24, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186518

RESUMO

Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.


Assuntos
Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Variação Genética , Genômica/métodos , Retroelementos/genética , Sequência de Aminoácidos , Sequência de Bases , Coleta de Dados/métodos , Evolução Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
16.
Proc Natl Acad Sci U S A ; 114(47): E10187-E10195, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109248

RESUMO

Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation.


Assuntos
Bacteriófagos/genética , DNA Complementar/genética , Mutagênese/genética , DNA Polimerase Dirigida por RNA/genética , RNA/genética , Retroelementos/genética , Adaptação Biológica/genética , Bordetella/virologia , Evolução Molecular , Variação Genética , Transcrição Reversa/genética
17.
Nat Microbiol ; 2: 17045, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368387

RESUMO

Major radiations of enigmatic Bacteria and Archaea with large inventories of uncharacterized proteins are a striking feature of the Tree of Life1-5. The processes that led to functional diversity in these lineages, which may contribute to a host-dependent lifestyle, are poorly understood. Here, we show that diversity-generating retroelements (DGRs), which guide site-specific protein hypervariability6-8, are prominent features of genomically reduced organisms from the bacterial candidate phyla radiation (CPR) and as yet uncultivated phyla belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaea) archaeal superphylum. From reconstructed genomes we have defined monophyletic bacterial and archaeal DGR lineages that expand the known DGR range by 120% and reveal a history of horizontal retroelement transfer. Retroelement-guided diversification is further shown to be active in current CPR and DPANN populations, with an assortment of protein targets potentially involved in attachment, defence and regulation. Based on observations of DGR abundance, function and evolutionary history, we find that targeted protein diversification is a pronounced trait of CPR and DPANN phyla compared to other bacterial and archaeal phyla. This diversification mechanism may provide CPR and DPANN organisms with a versatile tool that could be used for adaptation to a dynamic, host-dependent existence.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Evolução Molecular , Retroelementos/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Genoma Arqueal , Genoma Bacteriano , Genômica , Nanoarchaeota/genética , Nanoarchaeota/metabolismo , Filogenia , DNA Polimerase Dirigida por RNA/genética
19.
ACS Nano ; 10(12): 10966-10980, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024366

RESUMO

While the antibacterial properties of graphene oxide (GO) have been demonstrated across a spectrum of bacteria, the critical role of functional groups is unclear. To address this important issue, we utilized reduction and hydration methods to establish a GO library with different oxidation, hydroxyl, and carbon radical (•C) levels that can be used to study the impact on antibacterial activity. Using antibiotic-resistant bacteria as a test platform, we found that the •C density is most proximately associated with bacterial killing. Accordingly, hydrated GO (hGO), with the highest •C density, had the strongest antibacterial effects through membrane binding and induction of lipid peroxidation. To explore its potential applications, we demonstrated that coating of catheter and glass surfaces with hGO is capable of killing drug-resistant bacteria. In summary, •C is the principle surface moiety that can be utilized for clinical applications of GO-based antibacterial coatings.


Assuntos
Antibacterianos , Carbono , Grafite , Bactérias , Óxidos
20.
Proc Natl Acad Sci U S A ; 113(9): 2341-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884180

RESUMO

The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.


Assuntos
Bordetella bronchiseptica/virologia , Bordetella pertussis/virologia , Genes Bacterianos , Fator sigma/antagonistas & inibidores , Virulência/genética , Bordetella bronchiseptica/genética , Bordetella pertussis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA