Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0275899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240134

RESUMO

Understanding biological and environmental factors that influence movement behaviors and population connectivity of highly migratory fishes is essential for cooperative international management and conservation of exploited populations, like bluefin tuna. Pacific bluefin tuna Thunnus orientalis (PBT) spawn in the western Pacific Ocean and then juveniles disperse to foraging grounds across the North Pacific. Several techniques have been used to characterize the distribution and movement of PBT, but few methods can provide complete records across ontogeny from larvae to adult in individual fish. Here, otolith biominerals of large PBT collected from the western, eastern, and south Pacific Ocean, were analyzed for a suite of trace elements across calcified/proteinaceous growth zones to investigate patterns across ontogeny. Three element:Ca ratios, Li:Ca, Mg:Ca, and Mn:Ca displayed enrichment in the otolith core, then decreased to low stable levels after age 1-2 years. Thermal and metabolic physiologies, common diets, or ambient water chemistry likely influenced otolith crystallization, protein content, and elemental incorporation in early life. Although similar patterns were also exhibited for otolith Sr:Ca, Ba:Ca and Zn:Ca in the first year, variability in these elements differed significantly after age-2 and in the otolith edges by capture region, suggesting ocean-specific environmental factors or growth-related physiologies affected otolith mineralization across ontogeny.


Assuntos
Membrana dos Otólitos , Oligoelementos , Animais , Peixes , Membrana dos Otólitos/química , Oceano Pacífico , Oligoelementos/análise , Atum/fisiologia , Água/metabolismo
2.
Biol Lett ; 16(2): 20190878, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019467

RESUMO

Natal origin of subadult (age-1) Pacific bluefin tuna (PBT, Thunnus orientalis) from the California Current Large Marine Ecosystem (CCLME) was determined using natural tracers in ear stones (otoliths). Age-0 PBT collected from the two known spawning areas in the western Pacific Ocean (East China Sea, Sea of Japan) were used to establish baseline signatures from otolith cores over 4 years (2014-2017) based on a suite of trace elements (Li, Mg, Mn, Sr, Zn and Ba). Distinct chemical signatures existed in the otolith cores of age-0 PBT collected from the two spawning areas, with overall classification accuracy ranging 73-93% by year. Subadult PBT collected in the CCLME over the following 4 years (2015-2018) were then age-class matched to baselines using mixed-stock analysis. Natal origin of trans-Pacific migrants in the CCLME ranged 43-78% from the East China Sea and 22-57% from the Sea of Japan, highlighting the importance of both spawning areas for PBT in the CCLME. This study provides the first estimates on the natal origin of subadult PBT in this ecosystem using otolith chemistry and expands upon the application of these natural tracers for population connectivity studies for this species.


Assuntos
Ecossistema , Atum , Animais , California , China , Japão , Oceano Pacífico
3.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404878

RESUMO

As upper-level predators, sharks are important for maintaining marine food web structure, but populations are threatened by fishery exploitation. Sustainable management of shark populations requires improved understanding of migration patterns and population demographics, which has traditionally been sought through physical and/or electronic tagging studies. The application of natural tags such as elemental variations in mineralized band pairs of elasmobranch vertebrae cartilage could also reveal endogenous and exogenous processes experienced by sharks throughout their life histories. Here, elemental profiles were characterized in vertebrae encompassing complete life histories (birth-to-death) of shortfin mako (Isurus oxyrinchus), common thresher (Alopias vulpinus) and blue shark (Prionace glauca) of known tag and recapture locations in the eastern North Pacific Ocean. All sharks were injected with oxytetracycline at initial capture, released and subsequently recaptured, with individual liberty times ranging from 215 days to 6 years. Vertebral band pairs forming over the liberty intervals were verified by counting the number of band pairs deposited since the oxytetracycline band. Regular oscillations in vertebrae manganese (Mn) content corresponded well with the number of validated band pairs, suggesting that Mn variation could be used to age sharks. Increases in vertebrae barium concentration were correlated with times when individuals occupied areas with high coastal upwelling indices, the timing and spatial intensity of which varied from year to year. Interspecific relationships were probably influenced by behavioural differences in horizontal and vertical habitat use, feeding habits and thermoregulatory physiology. These results indicate that vertebral sclerochronology has the potential to advance our knowledge of elasmobranch life history including age and growth estimation and environmental reconstruction.


Assuntos
Determinação da Idade pelo Esqueleto/veterinária , Bário/metabolismo , Manganês/metabolismo , Tubarões/fisiologia , Coluna Vertebral/química , Determinação da Idade pelo Esqueleto/métodos , Fatores Etários , Animais , Ecossistema , Oceano Pacífico , Água do Mar/química , Tubarões/crescimento & desenvolvimento
4.
Rapid Commun Mass Spectrom ; 31(24): 2073-2080, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28940897

RESUMO

RATIONALE: Application of vertebral chemistry in elasmobranchs has the potential to progress our understanding of individual migration patterns and population dynamics. However, the influence of handling artifacts such as sample cleaning and storage on vertebral chemistry is unclear and requires experimental investigation. METHODS: Vertebrae centra from blacktip sharks (Carcharhinus limbatus) were cleaned with bleach (NaOCl) for 5 minutes (min), 1 hour (h) and 24 (h) in a cleaning experiment and stored frozen, in 70% ethanol, and 10% formalin treatments for 20 days in a storage experiment. Element concentrations (Li, Na, Mg, Mn, Cu, Zn, Sr, Ba, Pb) were quantified in the outer edges of vertebrae centra using laser ablation inductively coupled plasma mass spectrometry and the [element:Ca] molar ratios were compared among treatments and individual sharks. RESULTS: Bleach cleaning significantly increased [Na:Ca] and formalin storage decreased [Na:Ca] and [Mg:Ca], but ethanol storage did not affect any [element:Ca] ratios. Vertebrae edge [Sr:Ca], [Ba:Ca] and [Mn:Ca] varied among individual sharks, potentially reflecting different environments that they had previously inhabited. CONCLUSIONS: This study shows how archiving methods for vertebrae cartilage can affect primary element:Ca compositions. We demonstrate greatest element:Ca stabilities for vertebrae with limited bleach exposure that are either stored in ethanol or frozen, supporting the use of comparably archived sample sets in future elemental studies.


Assuntos
Cálcio/análise , Espectrometria de Massas , Tubarões , Coluna Vertebral/química , Animais , Feminino , Masculino , Biologia Marinha/métodos , Biologia Marinha/normas , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Metais/análise , Hipoclorito de Sódio/farmacologia , Manejo de Espécimes/métodos , Coluna Vertebral/efeitos dos fármacos , Fatores de Tempo
5.
Langmuir ; 25(16): 9518-24, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19413325

RESUMO

The gold nanocrystal seed-mediated approach using cetyltrimethylammonium bromide (CTAB) as a stabilizing surfactant is commonly used to make large quantities of monodisperse gold nanorods. This method, however, has been at times difficult to reproduce in different laboratories. We recently showed [Smith, D. K.; Korgel, B. A. Langmuir 2008, 24, 644-649] that a very low concentration impurity in CTAB obtained from some suppliers prevents nanorod growth but were not able to identify the impurity. Here, we report that the impurity is iodide. Inductively coupled plasma mass spectroscopy (ICP-MS) revealed that iodide concentrations vary in CTAB from different suppliers, from less than 2.75 ppm up to 840 ppm. When CTAB with iodide concentrations greater than 50 ppm is used, nanorods do not form and the product consists entirely of spherical nanocrystals. Iodide slows the reduction of Au(III) to Au0. Iodide adsorption on Au {111} surfaces inhibits nanorod growth.


Assuntos
Compostos de Cetrimônio/química , Ouro/química , Iodetos/química , Nanotubos/química , Cetrimônio , Microscopia Eletrônica de Transmissão , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA