Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0239165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027292

RESUMO

Microplastics, particularly microfibers, are ubiquitous, found in aquatic (freshwater and marine) and terrestrial environments and within the food web worldwide. It is well-established that microplastics in the form of textile fibers enter the environment via washing machines and wastewater treatment effluent. Less is known about the release of microfibers from electric clothes dryers. In this study we measure microfiber emissions from home installed dryers at two different sites. At each site the distribution of fibers landing on the snow's surface outside dryer vents and the weight of lint in dryer exhaust exiting dryer vents were measured. Fibers from the pink polyester fleece blankets used in this study were found in plots throughout a 30ft (9.14m) radius from the dryer vents, with an average number across all plots of 404 ± 192 (SD) (Site 1) and 1,169 ± 606 (SD) (Site 2). The majority of the fibers collected were located within 5 ft (1.52m) of the vents. Averages of 35 ± 16(SD)mg (Site 1) and 70 ± 77 (SD)mg (Site 2) of lint from three consecutive dry cycles were collected from dryer vent exhaust. This study establishes that electric clothes dryers emit masses of microfiber directly into the environment. Microfiber emissions vary based on dryer type, age, vent installation and lint trap characteristics. Therefore, dryers should be included in discussions when considering strategies, policies and innovations to prevent and mitigate microfiber pollution.


Assuntos
Vestuário , Poluentes Ambientais/análise , Lavanderia , Microplásticos/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Eletricidade , Saúde Ambiental , Poluentes Ambientais/toxicidade , Humanos , Microplásticos/toxicidade , Têxteis/análise , Têxteis/toxicidade
2.
Environ Pollut ; 265(Pt A): 114721, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806407

RESUMO

Microplastic debris is ubiquitous and yet sampling, classifying and enumerating this prolific pollutant in marine waters has proven challenging. Typically, waterborne microplastic sampling is undertaken using nets with a 333 µm mesh, which cannot account for smaller debris. In this study, we provide an estimate of the extent to which microplastic concentrations are underestimated with traditional sampling. Our efforts focus on coastal waters, where microplastics are predicted to have the greatest influence on marine life, on both sides of the North Atlantic Ocean. Microplastic debris was collected via surface trawls using 100, 333 and 500 µm nets. Our findings show that sampling using nets with a 100 µm mesh resulted in the collection of 2.5-fold and 10-fold greater microplastic concentrations compared with using 333 and 500 µm meshes respectively (P < 0.01). Based on the relationship between microplastic concentrations identified and extrapolation of our data using a power law, we estimate that microplastic concentrations could exceed 3700 microplastics m-3 if a net with a 1 µm mesh size is used. We further identified that use of finer nets resulted in the collection of significantly thinner and shorter microplastic fibres (P < 0.05). These results elucidate that estimates of marine microplastic concentrations could currently be underestimated.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Oceano Atlântico , Monitoramento Ambiental , Microplásticos
3.
Mar Pollut Bull ; 124(1): 245-251, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739105

RESUMO

Aquatic environments are sinks for anthropogenic contamination, whether chemical or solid pollutants. Microfibers shed from clothing and other textiles contribute to this problem. These can be plastic or non-plastic origin. Our aim was to investigate the presence and distribution of both types of anthropogenic microfibers along the length of the Hudson River, USA. Surface grab samples were collected and filtered through a 0.45µm filter paper. Abundance of fibers was determined after subtraction of potential contamination. 233 microfibers were recorded in 142 samples, averaging 0.98microfibersL-1. Subsequent micro-FTIR showed half of the fibers were plastic while the other half were non-plastic, but of anthropogenic origin. There was no relationship between fiber abundance, wastewater treatment plant location or population density. Extrapolating from this data, and using available hydrographic data, 34.4% of the Hudson River's watershed drainage area contributes an average 300 million anthropogenic microfibers into the Atlantic Ocean per day.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , New England , New York , Rios , Têxteis , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA