Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
JCI Insight ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405116

RESUMO

Daptomycin is a last resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by re-distributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a three-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the two genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for re-distribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.

2.
Antimicrob Agents Chemother ; : e0089824, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345182

RESUMO

The cefazolin inoculum effect (CzIE) has been associated with poor clinical outcomes in patients with methicillin-susceptible Staphylococcus aureus (MSSA) infections. We aimed to investigate the point prevalence of the CzIE among nasal colonizing MSSA isolates from ICU patients in a multicenter study in Colombia (2019-2023). Patients underwent nasal swabs to assess for S. aureus colonization on admission to the ICU, and some individuals had follow-up swabs. We performed cefazolin MIC by broth microdilution using standard and high inoculum and developed a modified nitrocefin-based rapid test to detect the CzIE. Whole-genome sequencing was carried out to characterize BlaZ types and allotypes, phylogenomics, and Agr-typing. A total of 352 patients were included; 46/352 (13%) patients were colonized with S. aureus and 22% (10/46) and 78% (36/46) with MRSA and MSSA, respectively. Among 36 patients who contributed with 43 MSSA colonizing isolates, 21/36 (58%) had MSSA exhibiting the CzIE. BlaZ type A and BlaZ-2 were the predominant type and allotype in 56% and 52%, respectively. MSSA belonging to CC30 were highly associated with the CzIE, and single-nucleotide polymorphism (SNP) analyses supported possible transmission of MSSA exhibiting the CzIE among some patients of the same unit. The modified nitrocefin rapid test had 100%, 94.4%, and 97.7% sensitivity, specificity, and accuracy, respectively. We found a high point prevalence of the CzIE in MSSA colonizing the nares of critically ill patients in Colombia. A modified rapid test was highly accurate in detecting the CzIE in this patient population.

3.
medRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39040169

RESUMO

The cefazolin inoculum effect (CzIE) has been associated with poor clinical outcomes in patients with MSSA infections. We aimed to investigate the point prevalence of the CzIE among nasal colonizing MSSA isolates from ICU patients in a multicenter study in Colombia (2019-2023). Patients underwent nasal swabs to assess for S. aureus colonization on admission to the ICU and some individuals had follow-up swabs. We performed cefazolin MIC by broth-microdilution using standard and high-inoculum and developed a modified nitrocefin-based rapid test to detect the CzIE. Whole genome sequencing was carried out to characterize BlaZ types and allotypes, phylogenomics and Agr-typing. All swabs were subjected to 16S-rRNA metabarcoding sequencing to evaluate microbiome characteristics associated with the CzIE. A total of 352 patients were included; 46/352 (13%) patients were colonized with S. aureus; 22% (10/46) and 78% (36/46) with MRSA and MSSA, respectively. Among 36 patients that contributed with 43 MSSA colonizing isolates, 21/36 (58%) had MSSA exhibiting the CzIE. BlaZ type A and BlaZ-2 were the predominant type and allotype in 56% and 52%, respectively. MSSA belonging to CC30 were highly associated with the CzIE and SNP analyses supported transmission of MSSA exhibiting the CzIE among some patients of the same unit. The modified nitrocefin rapid test had 100%, 94.4% and 97.7% sensitivity, specificity and accuracy, respectively. We found a high prevalence point prevalence of the CzIE in MSSA colonizing the nares of critically-ill patients in Colombia. A modified rapid test was highly accurate in detecting the CzIE in this patient population.

4.
Antimicrob Agents Chemother ; 68(8): e0012724, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38995033

RESUMO

The siderophore-cephalosporin cefiderocol (FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux-mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR, pirS, pirA, piuA, or piuD from 498 unique isolates collected before the introduction of FDC from four clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n = 15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild-type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cefiderocol , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Proteínas de Membrana/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Farmacorresistência Bacteriana/genética
5.
Nat Rev Microbiol ; 22(10): 598-616, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38831030

RESUMO

The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel ß-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
6.
Open Forum Infect Dis ; 11(6): ofae288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835498

RESUMO

Background: Non-Enterococcus faecium, non-E. faecalis (NFF) enterococci are a heterogeneous group of clinically pathogenic enterococci that include species with intrinsic low-level vancomycin resistance. Patients with cancer are at increased risk for bacteremia with NFF enterococci, but their clinical and molecular epidemiology have not been extensively described. Methods: We conducted a retrospective review of all patients (n = 70) with NFF bacteremia from 2016 to 2022 at a major cancer center. The main outcomes assessed were 30-day mortality, microbiological failure (positive blood cultures for ≥4 days), and recurrence of bacteremia (positive blood culture <14 days after clearance). Whole-genome sequencing was performed on all available NFF (n = 65). Results: Patients with hematological malignancies made up 56% of the cohort (77% had leukemia). The majority of solid malignancies (87%) were gastrointestinal in origin. The majority of infections (83%) originated from an intra-abdominal source. The most common NFF species were E. gallinarum (50%) and E. casseliflavus (30%). Most (61%) patients received combination therapy. Bacteremia recurred in 4.3% of patients, there was a 30-day mortality of 23%, and 4.3% had microbiological failure. E. gallinarum and E. casseliflavus isolates were genetically diverse with no spatiotemporal clustering to suggest a single strain. Frequencies of ampicillin resistance (4.3%) and daptomycin resistance (1.9%) were low. Patients with hematologic malignancy had infections with NFF enterococci that harbored more resistance genes than patients with solid malignancy (P = .005). Conclusions: NFF bacteremia is caused by a heterogeneous population of isolates and is associated with significant mortality. Hematological malignancy is an important risk factor for infection with NFF resistant to multiple antibiotics.

8.
J Infect Dis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578967

RESUMO

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

10.
J Antimicrob Chemother ; 79(4): 801-809, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334390

RESUMO

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções por Bactérias Gram-Positivas , Humanos , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Enterococcus faecalis , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Endocardite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Quimioterapia Combinada
11.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352536

RESUMO

The siderophore-cephalosporin cefiderocol(FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR , pirS , pirA , piuA or piuD from 498 unique isolates collected before the introduction of FDC from 4 clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n=15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.

12.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289081

RESUMO

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Assuntos
Membrana Celular , Daptomicina , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Antibacterianos/uso terapêutico , Biomarcadores/metabolismo , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Reprodutibilidade dos Testes
13.
J Fungi (Basel) ; 10(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248950

RESUMO

Both Mucorales and Gram-negative rods (GNRs) commonly infect patients with hematological malignancies (HM); however, their co-occurrence is understudied. Therefore, we retrospectively reviewed the records of 63 patients with HM and proven or probable sinopulmonary mucormycosis at MD Anderson Cancer Center (Houston, Texas) from 2000-2020. Seventeen out of sixty-three reviewed patients (27.0%) had sinopulmonary co-occurrence of GNRs (most commonly Pseudomonas aeruginosa and Stenotrophomonas maltophilia) within 30 days of a positive Mucorales culture or histology demonstrating Mucorales species. Eight of seventeen co-isolations of Mucorales and GNRs were found in same-day samples. All 15 patients with GNR co-occurrence and reported antimicrobial data had received anti-Pseudomonal agents within 14 days prior to diagnosis of mucormycosis and 5/15 (33.3%) had received anti-Stenotrophomonal agents. Demographic and clinical characteristics of patients with and without GNR co-occurrence were comparable. Forty-two-day all-cause mortality was high (34.9%) and comparable in patients with (41.2%) and without (32.6%) GNR detection (p = 0.53). In summary, over a quarter of heavily immunosuppressed patients with sinopulmonary mucormycosis harbored GNRs in their respiratory tract. Although no impact on survival outcomes was seen in a background of high mortality in our relatively underpowered study, pathogenesis studies are needed to understand the mutualistic interplay of GNR and Mucorales and their influence on host responses.

14.
Antimicrob Agents Chemother ; 68(1): e0100923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38063509

RESUMO

Cefiderocol is a siderophore cephalosporin designed to target multi-drug-resistant Gram-negative bacteria. Previously, the emergence of cefiderocol non-susceptibility has been associated with mutations in the chromosomal cephalosporinase (PDC) along with mutations in the PirA and PiuA/D TonB-dependent receptor pathways. Here, we report a clinical case of cefiderocol-resistant P. aeruginosa that emerged in a patient during treatment. This resistance was associated with mutations not previously reported, suggesting potential novel pathways to cefiderocol resistance.


Assuntos
Cefiderocol , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Cefiderocol/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Monobactamas/farmacologia , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico
15.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904970

RESUMO

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

16.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577577

RESUMO

Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by re-distributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a three-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the two genes ( cls1 and cls2 ) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, as an important mediator of CM remodeling required for re-distribution of anionic phospholipid microdomains via interactions with Cls1. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.

17.
J Antimicrob Chemother ; 78(10): 2442-2450, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37574665

RESUMO

OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.


Assuntos
Ceftazidima , Escherichia coli , Humanos , Ceftazidima/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Plasmídeos/genética , Testes de Sensibilidade Microbiana
18.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645818

RESUMO

Daptomycin (DAP) is often used as a first line therapy to treat vancomycin-resistant Enterococcus faecium (VR Efm ) infections but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP MICs have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ . In Enterococcus faecalis , LiaX is surface exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis , LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium . Here, we found that liaX is essential in E. faecium ( Efm ) with an activated LiaFSR system. Unlike E. faecalis , Efm LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX ELISA. We then assessed 86 clinical E. faecium BSI isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-R clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-S isolates by standard MIC determination had elevated LiaX ELISAs above the established cut-off. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many Efm isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.

20.
JAC Antimicrob Resist ; 5(3): dlad070, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37288080

RESUMO

Objectives: The increased identification of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) is an ongoing concern. However, information on the evolving antimicrobial resistance profile and molecular epidemiology of CR-PA over time is scarce. Thus, we conducted a cross-sectional analysis to investigate the phenotypic and genotypic characteristics of CR-PA recovered over different time periods, focusing on the isolates exhibiting a ceftolozane/tazobactam resistance phenotype. Methods: A total of 169 CR-PA isolated from clinical specimens at a single centre in Houston, TX, USA were studied. Among them, 61 isolates collected between 1999 and 2005 were defined as historical strains, and 108 collected between 2017 and 2018 were defined as contemporary strains. Antimicrobial susceptibilities against selected ß-lactams was determined. WGS data were used for the identification of antimicrobial resistance determinants and phylogenetic analysis. Results: Non-susceptibility to ceftolozane/tazobactam and ceftazidime/avibactam increased from 2% (1/59) to 17% (18/108) and from 7% (4/59) to 17% (18/108) from the historical to the contemporary collection, respectively. Carbapenemase genes, which were not identified in the historical collection, were harboured by 4.6% (5/108) of the contemporary strains, and the prevalence of ESBL genes also increased from 3.3% (2/61) to 16% (17/108). Genes encoding acquired ß-lactamases were largely confined to the high-risk clones. Among ceftolozane/tazobactam-resistant isolates, non-susceptibility to ceftazidime/avibactam, imipenem/relebactam and cefiderocol was observed in 94% (15/16), 56% (9/16) and 12.5% (2/16), respectively. Resistance to ceftolozane/tazobactam and imipenem/relebactam was primarily associated with the presence of exogenous ß-lactamases. Conclusions: Acquisition of exogenous carbapenemases and ESBLs may be a worrisome trend in P. aeruginosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA