Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491565

RESUMO

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236087

RESUMO

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

3.
Nat Commun ; 14(1): 7046, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949859

RESUMO

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal. These results nearly double the highest pressure at which extended x-ray absorption fine structure has been reported in any material. In this work, the copper temperature is unexpectedly found to be much higher than predicted when adjacent to diamond layer(s), demonstrating the important influence of the sample environment on the thermal state of materials; this effect may introduce additional temperature uncertainties in some previous experiments using diamond and provides new guidance for future experimental design.

4.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

5.
Nat Commun ; 13(1): 2260, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477934

RESUMO

There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.

6.
Phys Rev Lett ; 127(13): 135701, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623849

RESUMO

The ubiquitous nature and unusual properties of water have motivated many studies on its metastability under temperature- or pressure-induced phase transformations. Here, nanosecond compression by a high-power laser is used to create the nonequilibrium conditions where liquid water persists well into the stable region of ice VII. Through our experiments, as well as a complementary theoretical-computational analysis based on classical nucleation theory, we report that the metastability limit of liquid water under nearly isentropic compression from ambient conditions is at least 8 GPa, higher than the 7 GPa previously reported for lower loading rates.

7.
Science ; 372(6546): 1063-1068, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083483

RESUMO

New techniques are advancing the frontier of high-pressure physics beyond 1 terapascal, leading to new discoveries and offering stringent tests for condensed-matter theory and advanced numerical methods. However, the ability to absolutely determine the pressure state remains challenging, and well-calibrated pressure-density reference materials are required. We conducted shockless dynamic compression experiments at the National Ignition Facility and the Z machine to obtain quasi-absolute, high-precision, pressure-density equation-of-state data for gold and platinum. We derived two experimentally constrained pressure standards to terapascal conditions. Establishing accurate experimental determinations of extreme pressure will facilitate better connections between experiments and theory, paving the way toward improving our understanding of material response to these extreme conditions.

8.
Nature ; 593(7860): 517-521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34040210

RESUMO

The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter's atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter's interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.

9.
Phys Rev E ; 102(4-1): 043212, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212701

RESUMO

In this work, we present results from experiments capable of producing and measuring the propagation of multiple successive, copropagating shocks across an unstable planar interface, where the shocks are independently driven and separately controllable, enabling the study of this important phenomenon. Copropagating shocks play a significant role in a wide range of systems involving stratified media subject to a shock, and exhibit different physical characteristics compared to counterpropagating shocks. Existing techniques, however, preclude copropagating shocks, so experiments to date have been limited to the study of counterpropagating shocks. We address this previous limitation and open a physical parameter space for study using a new hohlraum platform on the National Ignition Facility. Initial experimental results are presented together with comparisons from numerical simulations.

10.
Phys Rev Lett ; 125(16): 165701, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124844

RESUMO

Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.

11.
Phys Rev E ; 102(2-1): 023210, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942378

RESUMO

This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73×10^{16}±2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.

12.
Phys Rev Lett ; 124(1): 015701, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976690

RESUMO

Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques.

13.
Phys Rev Lett ; 123(4): 045701, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491279

RESUMO

We combined laser shock compression with in situ x-ray diffraction to probe the crystallographic state of gold (Au) on its principal shock Hugoniot. Au has long been recognized as an important calibration standard in diamond anvil cell experiments due to the stability of its face-centered cubic (fcc) structure to extremely high pressures (P >600 GPa at 300 K). This is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures. In this Letter, we probe high-pressure and high-temperature conditions on the shock Hugoniot and observe fcc Au at 169 GPa and the first evidence of body-centered cubic (bcc) Au at 223 GPa. Upon further compression, the bcc phase is observed in coexistence with liquid scattering as the Hugoniot crosses the Au melt curve before 322 GPa. The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near ∼220 GPa.

14.
Phys Rev Lett ; 122(25): 255702, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347873

RESUMO

We present laser-driven shock compression experiments on cryogenic liquid deuterium to 550 GPa along the principal Hugoniot and reflected-shock data up to 1 TPa. High-precision interferometric Doppler velocimetry and impedance-matching analysis were used to determine the compression accurately enough to reveal a significant difference as compared to state-of-the-art ab initio calculations and thus, no single equation of state model fully matches the principal Hugoniot of deuterium over the observed pressure range. In the molecular-to-atomic transition pressure range, models based on density functional theory calculations predict the maximum compression accurately. However, beyond 250 GPa along the principal Hugoniot, first-principles models exhibit a stiffer response than the experimental data. Similarly, above 500 GPa the reflected shock data show 5%-7% higher compression than predicted by all current models.

15.
J Appl Microbiol ; 126(4): 1044-1058, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30597735

RESUMO

AIMS: The objective of this study was to explore the diversity of endolichenic fungi from Nephroma laevigatum and to investigate their antiproliferative and antibiofilm potential. METHODS AND RESULTS: Forty-six isolates were obtained and identified by DNA barcoding. They belonged to genera Nemania, Daldinia, Peziza and Coniochaeta. Six strains belonging to the most represented species were selected and tested for their antiproliferative and antibiofilm activities. Extracts were analysed by reversed-phase HPLC. Activities against fungal and bacterial biofilm were evaluated using tetrazolium salt (XTT) assay and crystal violet assay respectively. Antiproliferative responses of extracts were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction by two extracts was observed in two cell lines (HT-29 and PC-3) via morphological changes, pro-apoptotic and anti-apoptotic proteins analysis (Western blotting) and DNA fragmentation. Four extracts displayed activities against Candida albicans biofilm with IC50 values ranging from 25 to 200 µg ml-1 . All extracts were inactive against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The most active isolates against human colorectal (HT-29 and HCT116) and prostate (PC-3 and DU145) cancer cell lines were Nemania serpens (NL08) and Nemania aenea var. aureolatum (NL38) with IC50 values ranging from 13 to 39 µg ml-1 . These extracts induced an apoptotic process through activation of caspases 8 and 3, poly(ADP-ribose) polymerase cleavage and DNA fragmentation. CONCLUSIONS: Selected crude fungal extracts have antiproliferative and antibiofilm activities. Data suggest that this antipoliferative effect is due to apoptosis process. This is the first report showing the effects of endolichenic fungi from N. laevigatum. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the therapeutic potential of endolichenic fungi metabolites as sources for drug discovery programmes.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/química , Biofilmes/efeitos dos fármacos , Líquens/química , Apoptose/efeitos dos fármacos , Ascomicetos/classificação , Ascomicetos/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Líquens/microbiologia , Extratos Vegetais/farmacologia
16.
Rev Sci Instrum ; 90(12): 125113, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893795

RESUMO

The use of x-ray diffraction (XRD) measurements in laser-driven dynamic compression experiments at high-power laser facilities is becoming increasingly common. Diffraction allows one to probe in situ the transformations occurring at the atomic level at extreme conditions of pressure, temperature, and time scale. In these measurements, the x-ray source is generated by irradiation of a solid foil. Under certain laser drive conditions, quasimonochromatic He-α radiation is generated. Careful analysis of the x-ray source plasma spectra reveals that this radiation is not a single line emission and that monochromaticity is highly dependent on the laser irradiance. In this work, we analyze how the spectra emitted by laser-irradiated copper, germanium, and iron foils at the Omega Laser vary depending on different laser drive conditions and discuss the implications for XRD experiments.

17.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

18.
Phys Rev Lett ; 121(2): 025001, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085737

RESUMO

We have developed an experimental platform for the National Ignition Facility that uses spherically converging shock waves for absolute equation-of-state (EOS) measurements along the principal Hugoniot. In this Letter, we present one indirect-drive implosion experiment with a polystyrene sample that employs radiographic compression measurements over a range of shock pressures reaching up to 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [R. Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.1248] at a strongly improved precision, allowing us to discriminate between different EOS models. We find excellent agreement with Kohn-Sham density-functional-theory-based molecular dynamics simulations.

19.
Phys Rev Lett ; 120(24): 245003, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956968

RESUMO

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10^{16} (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm^{2}) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment.

20.
Rev Sci Instrum ; 87(11): 114903, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910410

RESUMO

Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology-traceable tungsten-filament lamp through various narrowband (40-nm-wide) filters. The integrated signal over the SOP's ∼250-nm operating range is then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. Error estimates indicate that brightness temperature can be inferred to a precision of <5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA