Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Cell Stem Cell ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733994

RESUMO

Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.

2.
EMBO J ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773319

RESUMO

A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.

4.
Dev Cell ; 59(9): 1175-1191.e7, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38521055

RESUMO

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Metaplasia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio , Regeneração , Estômago , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Ferroptose/fisiologia , Estômago/patologia , Regeneração/fisiologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Metaplasia/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Mucosa Gástrica/metabolismo , Camundongos Endogâmicos C57BL , Celulas Principais Gástricas/metabolismo , Células Acinares/metabolismo , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Peptídeos e Proteínas de Sinalização Intercelular
5.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G504-G524, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349111

RESUMO

Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.


Assuntos
Doxorrubicina , Intestino Delgado , Intestinos , Camundongos , Animais , Intestinos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Adutos de DNA , Jejum/fisiologia
6.
PLoS Negl Trop Dis ; 18(2): e0011930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324590

RESUMO

Ascariasis (roundworm) is the most common parasitic helminth infection globally and can lead to significant morbidity in children including chronic lung disease. Children become infected with Ascaris spp. via oral ingestion of eggs. It has long been assumed that Ascaris egg hatching and larval translocation across the gastrointestinal mucosa to initiate infection occurs in the small intestine. Here, we show that A. suum larvae hatched in the host stomach in a murine model. Larvae utilize acidic mammalian chitinase (AMCase; acid chitinase; Chia) from chief cells and acid pumped by parietal cells to emerge from eggs on the surface of gastric epithelium. Furthermore, antagonizing AMCase and gastric acid in the stomach decreases parasitic burden in the liver and lungs and attenuates lung disease. Given Ascaris eggs are chitin-coated, the gastric corpus would logically be the most likely organ for egg hatching, though this is the first study directly evincing the essential role of the host gastric corpus microenvironment. These findings point towards potential novel mechanisms for therapeutic targets to prevent ascariasis and identify a new biomedical significance of AMCase in mammals.


Assuntos
Ascaríase , Ascaris suum , Quitinases , Pneumopatias , Doenças dos Suínos , Criança , Humanos , Animais , Camundongos , Suínos , Ascaríase/parasitologia , Larva , Modelos Animais de Doenças , Ascaris , Pulmão/parasitologia , Estômago , Doenças dos Suínos/parasitologia , Mamíferos
7.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G205-G215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193187

RESUMO

Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique to identify novel cell markers, developmental trajectories, and transcriptional changes during cell differentiation and disease onset and progression. In this review, we highlight recent scRNA-seq studies of the gastric corpus in both human and murine systems that have provided insight into gastric organogenesis, identified novel markers for the various gastric lineages during development and in adults, and revealed transcriptional changes during regeneration and tumorigenesis. Overall, by elucidating transcriptional states and fluctuations at the cellular level in healthy and disease contexts, scRNA-seq may lead to better, more personalized clinical treatments for disease progression.


Assuntos
Análise de Célula Única , Estômago , Adulto , Humanos , Animais , Camundongos , Diferenciação Celular , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos
8.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260387

RESUMO

A healthy bladder requires the homeostatic maintenance of and rapid regeneration of urothelium upon stress/injury/infection. Several factors have been identified to play important roles in urothelial development, injury and disease response, however, little is known about urothelial regulation at homeostasis. Here, we identify a new role for IFRD1, a stress-induced gene that has recently been demonstrated to play a critical role in adult tissue proliferation and regeneration, in maintenance of urothelial function/ homeostasis in a mouse model. We show that the mouse bladder expresses IFRD1 at homeostasis and its loss alters the global transcriptome of the bladder with significant accumulation of cellular organelles including multivesicular bodies with undigested cargo, lysosomes and mitochondria. We demonstrate that IFRD1 interacts with several mRNA-translation-regulating factors in human urothelial cells and that the urothelium of Ifrd1-/- mice reveal decreased global translation and enhanced endoplasmic reticulum (ER) stress response. Ifrd1-/- bladders have activation of the unfolded protein response (UPR) pathway, specifically the PERK arm, with a concomitant increase in oxidative stress and spontaneous exfoliation of urothelial cells. Further, we show that such increase in cell shedding is associated with a compensatory proliferation of the basal cells but impaired regeneration of superficial cells. Finally, we show that upon loss of IFRD1, mice display aberrant voiding behavior. Thus, we propose that IFRD1 is at the center of many crucial cellular pathways that work together to maintain urothelial homeostasis, highlighting its importance as a target for diagnosis and/or therapy in bladder conditions.

9.
J Gastroenterol ; 59(4): 285-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242996

RESUMO

Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.


Assuntos
Gastrite Atrófica , Lesões Pré-Cancerosas , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/genética , Lesões Pré-Cancerosas/patologia , Biomarcadores , Metaplasia , Mucosa Gástrica/patologia
10.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563309

RESUMO

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Assuntos
Pâncreas , Pancreatite , Camundongos , Animais , Pâncreas/patologia , Macrófagos , Pancreatite/genética , Pancreatite/patologia , Fibrose , Neoplasias Pancreáticas
11.
Front Cell Dev Biol ; 11: 1186638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427381

RESUMO

Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.

12.
Cell Mol Gastroenterol Hepatol ; 16(3): 325-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270061

RESUMO

BACKGROUND & AIMS: Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach. METHODS: We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells. RESULTS: SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM. CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.


Assuntos
Celulas Principais Gástricas , Animais , Camundongos , Celulas Principais Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Células Parietais Gástricas/metabolismo , Estômago
13.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014710

RESUMO

RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Rbm47-IKO mice exhibited increased proliferation and abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapted to radiation injury and were protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice were protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice developed spontaneous polyposis, and Rbm47-IKO ApcMin/+ mice manifested an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue, along with alternative splicing of tight junction protein 1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer associated independently with decreased overall survival. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory, and tumorigenic pathways.


Assuntos
Colite , Neoplasias do Colo , Adulto , Camundongos , Humanos , Animais , Idoso , Camundongos Knockout , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/genética , Carcinogênese/genética , Proliferação de Células , RNA Mensageiro/genética , Estresse Oxidativo , Proteínas de Ligação a RNA/genética
14.
Front Cell Dev Biol ; 11: 1151790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994101

RESUMO

Introduction: Plasticity is an inherent property of the normal gastrointestinal tract allowing for appropriate response to injury and healing. However, the aberrancy of adaptable responses is also beginning to be recognized as a driver during cancer development and progression. Gastric and esophageal malignancies remain leading causes of cancer-related death globally as there are limited early disease diagnostic tools and paucity of new effective treatments. Gastric and esophageal adenocarcinomas share intestinal metaplasia as a key precancerous precursor lesion. Methods: Here, we utilize an upper GI tract patient-derived tissue microarray that encompasses the sequential development of cancer from normal tissues to illustrate the expression of a set of metaplastic markers. Results: We report that in contrast to gastric intestinal metaplasia, which has traits of both incomplete and complete intestinal metaplasia, Barrett's esophagus (i.e., esophageal intestinal metaplasia) demonstrates hallmarks of incomplete intestinal metaplasia. Specifically, this prevalent incomplete intestinal metaplasia seen in Barrett's esophagus manifests as concurrent development and expression of both gastric and intestinal traits. Additionally, many gastric and esophageal cancers display a loss of or a decrease in these characteristic differentiated cell properties, demonstrating the plasticity of molecular pathways associated with the development of these cancers. Discussion: Further understanding of the commonalities and differences governing the development of upper GI tract intestinal metaplasias and their progression to cancer will lead to improved diagnostic and therapeutic avenues.

15.
Nat Commun ; 14(1): 822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788228

RESUMO

Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Ascite/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/patologia , Neoplasias Gástricas/patologia
16.
Gastro Hep Adv ; 1(5): 733-745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117550

RESUMO

BACKGROUND AND AIMS: Stomach cells can be converted to insulin-producing cells by Neurog3, MafA, and Pdxl over-expression. Enteroendocrine cells can be similarly made to produce insulin by the deletion of FOXO1. Characteristics and functional properties of FOXO1-expressing stomach cells are not known. METHODS: Using mice bearing a FOXO1-GFP knock-in allele and primary cell cultures, we examined the identity of FOXO1-expressing stomach cells and analyzed their features through loss-of-function studies with red-to-green fluorescent reporters. RESULTS: FOXO1 localizes to a subset of Neurog3 and parietal cells. FOXO1 deletion ex vivo or in vivo using Neurog3-cre or Atp4b-cre increased numbers of parietal cells, generated insulin- and C-peptide-immunoreactive cells, and raised Neurog3 messenger RNA. Gene expression and ChIP- seq experiments identified the cell cycle regulator cyclin E1 (CCNE1) as a FOXO1 target. CONCLUSION: FOXO1 is expressed in a subset of stomach cells. Its ablation increases parietal cells and yields insulin-immunoreactive cells, consistent with a role in lineage determination.

17.
Am J Gastroenterol ; 117(10): 1583-1592, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970814

RESUMO

INTRODUCTION: Radiofrequency ablation (RFA) of Barrett's esophagus (BE) inflicts a wound spanning 3 epithelial types (stratified squamous, Barrett's metaplasia, gastric epithelium), yet the esophageal injury heals almost completely with squamous epithelium. Knowledge of how this unique wound heals might elucidate mechanisms underlying esophageal metaplasia. We aimed to prospectively and systematically characterize the early endoscopic and histologic features of RFA wound healing. METHODS: Patients with nondysplastic BE had endoscopy with systematic esophageal photographic mapping, biopsy, and volumetric laser endomicroscopy performed before and at 1, 2, and 4 weeks after RFA. RESULTS: Seven patients (6 men; mean age 56.1 ± 10.9 years) completed this study. Squamous re-epithelialization of RFA wounds did not only progress exclusively through squamous cells extending from the proximal wound edge but also progressed through islands of squamous epithelium sprouting throughout the ablated segment. Volumetric laser endomicroscopy revealed significant post-RFA increases in subepithelial glandular structures associated with the squamous islands. In 2 patients, biopsies of such islands revealed newly forming squamous epithelium contiguous with immature-appearing squamous cells arising from esophageal submucosal gland ducts. Subsquamous intestinal metaplasia (SSIM) was found in biopsies at 2 and/or 4 weeks after RFA in 6 of 7 patients. DISCUSSION: RFA wounds in BE are re-epithelialized, not just by squamous cells from the proximal wound margin but by scattered squamous islands in which esophageal submucosal gland duct cells seem to redifferentiate into the squamous progenitors that fuel squamous re-epithelialization. SSIM can be found in most patients during the healing process. We speculate that this SSIM might underlie Barrett's recurrences after apparently successful eradication.


Assuntos
Esôfago de Barrett , Carcinoma de Células Escamosas , Ablação por Cateter , Neoplasias Esofágicas , Idoso , Esôfago de Barrett/patologia , Carcinoma de Células Escamosas/cirurgia , Neoplasias Esofágicas/patologia , Esofagoscopia , Humanos , Masculino , Metaplasia/complicações , Pessoa de Meia-Idade , Cicatrização
18.
Curr Opin Genet Dev ; 75: 101948, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809361

RESUMO

Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.


Assuntos
Plasticidade Celular , Estômago , Diferenciação Celular/genética , Linhagem da Célula/genética , Plasticidade Celular/genética , Células-Tronco , Estômago/patologia
20.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132959

RESUMO

Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling-independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.


Assuntos
Adenosina Desaminase/genética , Epitélio/patologia , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , RNA de Cadeia Dupla/genética , Adenosina Desaminase/biossíntese , Animais , Modelos Animais de Doenças , Epitélio/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Masculino , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Edição de RNA/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA