Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Acad Audiol ; 29(9): 814-825, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278866

RESUMO

BACKGROUND: Cochlear implant (CI) users are affected more than their normal hearing (NH) peers by the negative consequences of background noise on speech understanding. Research has shown that adult CI users can improve their speech recognition in challenging listening environments by using dual-microphone beamformers, such as adaptive directional microphones (ADMs) and wireless remote microphones (RMs). The suitability of these microphone technologies for use in children with CIs is not well-understood nor widely accepted. PURPOSE: To assess the benefit of ADM or RM technology on speech perception in background noise in children and adolescents with cochlear implants (CIs) with no previous or current use of ADM or RM. RESEARCH DESIGN: Mixed, repeated measures design. STUDY SAMPLE: Twenty (20) children, ten (10) CI users (mean age 14.3 yrs) who used Advanced Bionics HiRes90K implants with research Naida processors, and ten (10) NH age-matched controls participated in this prospective study. INTERVENTION: CI users listened with an ear-canal level microphone, T-Mic (TM), an ADM, and a wireless RM at different audio-mixing ratios. Speech understanding with five microphone settings (TM 100%, ADM, RM + TM 50/50, RM + TM 75/25, RM 100%) was evaluated in quiet and in noise. DATA COLLECTION AND ANALYSIS: Speech perception ability was measured using children's spondee words to obtain a speech recognition threshold for 80% accuracy (SRT80%) in 20-talker babble where the listener sat in a sound booth 1 m (3.28') from the target speech (front) and noise (behind) to test five microphone settings (TM 100%, ADM, RM + TM 50/50, RM + TM 75/25, RM 100%). Group performance-intensity functions were computed for each listening condition to show the effects of microphone configuration with respect to signal-to-noise ratio (SNR). A difference score (CI Group minus NH Group) was computed to show the effect of microphone technology at different SNRs relative to NH. Statistical analysis using a repeated-measures analysis of variance evaluated the effects of the microphone configurations on SRT80% and performance at SNRs. Between-groups analysis of variance was used to compare the CI group with the NH group. RESULTS: The speech recognition was significantly poorer for children with CI than children with NH in quiet and in noise when using the TM alone. Adding the ADM or RM provided a significant improvement in speech recognition for the CI group over use of the TM alone in noise (mean dB advantage ranged from 5.8 for ADM to 16 for RM100). When children with CI used the RM75 or RM100 in background babble, speech recognition was not statistically different from the group with NH. CONCLUSION: Speech recognition in noise performance improved with the use of ADM and RM100 or RM75 over TM-only for children with CIs. Alhough children with CI remain at a disadvantage as compared with NH children in quiet and more favorable SNRs, microphone technology can enhance performance for some children with CI to match that of NH peers in contexts with negative SNRs.


Assuntos
Implantes Cocleares , Ruído , Desenho de Prótese , Percepção da Fala , Adolescente , Criança , Humanos , Estudos Prospectivos , Adulto Jovem
2.
J Acoust Soc Am ; 136(5): 2714-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25373971

RESUMO

The hypothesis of this study was that broader patterns of physiological channel interactions in the local region of the cochlea are associated with poorer spectral resolution in the same region. Electrically evoked compound action potentials (ECAPs) were measured for three to six probe electrodes per subject to examine the channel interactions in different regions across the electrode array. To evaluate spectral resolution at a confined location within the cochlea, spectral-ripple discrimination (SRD) was measured using narrowband ripple stimuli with the bandwidth spanning five electrodes: Two electrodes apical and basal to the ECAP probe electrode. The relationship between the physiological channel interactions, spectral resolution in the local cochlear region, and vowel identification was evaluated. Results showed that (1) there was within- and across-subject variability in the widths of ECAP channel interaction functions and in narrowband SRD performance, (2) significant correlations were found between the widths of the ECAP functions and narrowband SRD thresholds, and between mean bandwidths of ECAP functions averaged across multiple probe electrodes and broadband SRD performance across subjects, and (3) the global spectral resolution reflecting the entire electrode array, not the local region, predicts vowel identification.


Assuntos
Cóclea/fisiopatologia , Implantes Cocleares , Potenciais Evocados Auditivos/fisiologia , Fonética , Percepção da Fala/fisiologia , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Discriminação Psicológica , Eletrodos Implantados , Desenho de Equipamento , Perda Auditiva/fisiopatologia , Perda Auditiva/terapia , Humanos , Pessoa de Meia-Idade , Reconhecimento Fisiológico de Modelo , Psicoacústica , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA