Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(9): 3911-3921, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29569798

RESUMO

Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb-14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.


Assuntos
Carbono/metabolismo , Mudança Climática , Plantas/metabolismo , Solo/química , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Ecossistema , Desenvolvimento Vegetal , Estações do Ano , Sphagnopsida
2.
Sci Total Environ ; 590-591: 316-324, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279534

RESUMO

Seasonal snow cover provides essential insulation for mountain ecosystems, but expected changes in precipitation patterns and snow cover duration due to global warming can influence the activity of soil microbial communities. In turn, these changes have the potential to create new dynamics of soil organic matter cycling. To assess the effects of experimental snow removal and advanced spring conditions on soil carbon (C) and nitrogen (N) dynamics, and on the biomass and structure of soil microbial communities, we performed an in situ study in a subalpine grassland in the Austrian Alps, in conjunction with soil incubations under controlled conditions. We found substantial winter C-mineralisation and high accumulation of inorganic and organic N in the topsoil, peaking at snowmelt. Soil microbial biomass doubled under the snow, paralleled by a fivefold increase in its C:N ratio, but no apparent change in its bacteria-dominated community structure. Snow removal led to a series of mild freeze-thaw cycles, which had minor effects on in situ soil CO2 production and N mineralisation. Incubated soil under advanced spring conditions, however, revealed an impaired microbial metabolism shortly after snow removal, characterised by a limited capacity for C-mineralisation of both fresh plant-derived substrates and existing soil organic matter (SOM), leading to reduced priming effects. This effect was transient and the observed recovery in microbial respiration and SOM priming towards the end of the winter season indicated microbial resilience to short-lived freeze-thaw disturbance under field conditions. Bacteria showed a higher potential for uptake of plant-derived C substrates during this recovery phase. The observed temporary loss in microbial C-mineralisation capacity and the promotion of bacteria over fungi can likely impede winter SOM cycling in mountain grasslands under recurrent winter climate change events, with plausible implications for soil nutrient availability and plant-soil interactions.


Assuntos
Pradaria , Estações do Ano , Neve , Microbiologia do Solo , Solo/química , Áustria , Carbono/análise , Mudança Climática , Nitrogênio/análise
3.
Ecol Evol ; 7(3): 855-862, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168022

RESUMO

Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species-rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short-term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community-weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon-to-nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long-term climate change effects, especially in nutrient-poor systems with slow-growing vegetation.

4.
Eur J Protistol ; 55(Pt B): 190-202, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27161931

RESUMO

Soil microbial communities significantly contribute to global fluxes of nutrients and carbon. Their response to climate change, including winter warming, is expected to modify these processes through direct effects on microbial functions due to osmotic stress, and changing temperature regimes. Using four European peatlands reflecting different frequencies of frost events, we show that peatland testate amoeba communities diverge among sites with different winter climates, and that this is reflected through contrasting functions. We found that exposure to harder soil frost promoted species ß-diversity (species turnover) thus shifting the community composition of testate amoebae. In particular, we found that harder soil frost, and lower water-soluble phenolic compounds, induced functional turnover through the decrease of large species (-68%, >80µm) and the increase of small-bodied mixotrophic species (i.e. Archerella flavum; +79%). These results suggest that increased exposure to soil frost could be highly limiting for large species while smaller species are more resistant. Furthermore, we found that ß-glucosidase enzymatic activity, in addition to soil temperature, strongly depended of the functional diversity of testate amoebae (R2=0.95, ANOVA). Changing winter conditions can therefore strongly impact peatland decomposition process, though it remains unclear if these changes are carried-over to the growing season.


Assuntos
Amoeba/fisiologia , Biodiversidade , Congelamento , Solo/parasitologia , Áreas Alagadas
5.
Sci Rep ; 5: 16931, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603894

RESUMO

Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.


Assuntos
Carbono/metabolismo , Mudança Climática , Bactérias/metabolismo , Biomassa , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Metabolismo Energético , Fungos/metabolismo , Sphagnopsida/metabolismo
6.
PLoS One ; 9(3): e90882, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24633085

RESUMO

BACKGROUND: Monitoring the properties of dissolved organic carbon (DOC) in soil water is frequently used to evaluate changes in soil quality and to explain shifts in freshwater ecosystem functioning. METHODS: Using >700 individual soils (0-15 cm) collected from a 209,331 km(2) area we evaluated the relationship between soil classification (7 major soil types) or vegetation cover (8 dominant classes, e.g. cropland, grassland, forest) and the absorbance properties (254 and 400 nm), DOC quantity and quality (SUVA, total soluble phenolics) of soil water. RESULTS: Overall, a good correlation (r(2)= 0.58) was apparent between soil water absorbance and DOC concentration across the diverse range of soil types tested. In contrast, both DOC and the absorbance properties of soil water provided a poor predictor of SUVA or soluble phenolics which we used as a measure of humic substance concentration. Significant overlap in the measured ranges for UV absorbance, DOC, phenolic content and especially SUVA of soil water were apparent between the 8 vegetation and 7 soil classes. A number of significant differences, however, were apparent within these populations with total soluble phenolics giving the greatest statistical separation between both soil and vegetation groups. CONCLUSIONS: We conclude that the quality of DOC rather than its quantity provides a more useful measure of soil quality in large scale surveys.


Assuntos
Carbono/análise , Água Doce/análise , Solo/química , Ecossistema , Monitoramento Ambiental
7.
Sci Total Environ ; 473-474: 465-72, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24388900

RESUMO

The pressure of climate change is disproportionately high in mountainous regions, and small changes may push ecosystem processes beyond sensitivity thresholds, creating new dynamics of carbon and nutrient cycling. Given that the rate of organic matter decomposition is strongly dependent upon temperature and soil moisture, the sensitivity of soil respiration to both metrics is highly relevant when considering soil-atmosphere feedbacks under a changing climate. To assess the effects of changing climate in a mountain pasture system, we transplanted turfs along an elevation gradient, monitored in situ soil respiration, incubated collected top-soils to determine legacy effects on temperature sensitivity, and analysed soil organic matter (SOM) to detect changes in quality and quantity of SOM fractions. In situ transplantation down-slope reduced soil moisture and increased soil temperature, with concurrent reductions in soil respiration. Soil moisture acted as an overriding constraint to soil respiration, and significantly reduced the sensitivity to temperature. Under controlled laboratory conditions, removal of the moisture constraint to heterotrophic respiration led to a significant respiration-temperature response. However, despite lower respiration rates down-slope, the response function was comparable among sites, and therefore unaffected by antecedent conditions. We found shifts in the SOM quality, especially of the light fraction, indicating changes to the dynamics of decomposition of recently deposited material. Our findings highlighted the resilience of the microbial community to severe climatic perturbations, but also that soil moisture stress during the growing season can significantly reduce soil function in addition to direct effects on plant productivity. This demonstrated the sensitivity of subalpine pastures under climate change, and possible implications for sustainable use given reductions in organic matter turnover and consequent feedbacks to nutrient cycling.


Assuntos
Mudança Climática , Ecossistema , Microbiologia do Solo , Solo/química , Temperatura , Adaptação Fisiológica , Processos Heterotróficos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA