Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur Radiol ; 34(2): 810-822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37606663

RESUMO

OBJECTIVES: Non-contrast computed tomography of the brain (NCCTB) is commonly used to detect intracranial pathology but is subject to interpretation errors. Machine learning can augment clinical decision-making and improve NCCTB scan interpretation. This retrospective detection accuracy study assessed the performance of radiologists assisted by a deep learning model and compared the standalone performance of the model with that of unassisted radiologists. METHODS: A deep learning model was trained on 212,484 NCCTB scans drawn from a private radiology group in Australia. Scans from inpatient, outpatient, and emergency settings were included. Scan inclusion criteria were age ≥ 18 years and series slice thickness ≤ 1.5 mm. Thirty-two radiologists reviewed 2848 scans with and without the assistance of the deep learning system and rated their confidence in the presence of each finding using a 7-point scale. Differences in AUC and Matthews correlation coefficient (MCC) were calculated using a ground-truth gold standard. RESULTS: The model demonstrated an average area under the receiver operating characteristic curve (AUC) of 0.93 across 144 NCCTB findings and significantly improved radiologist interpretation performance. Assisted and unassisted radiologists demonstrated an average AUC of 0.79 and 0.73 across 22 grouped parent findings and 0.72 and 0.68 across 189 child findings, respectively. When assisted by the model, radiologist AUC was significantly improved for 91 findings (158 findings were non-inferior), and reading time was significantly reduced. CONCLUSIONS: The assistance of a comprehensive deep learning model significantly improved radiologist detection accuracy across a wide range of clinical findings and demonstrated the potential to improve NCCTB interpretation. CLINICAL RELEVANCE STATEMENT: This study evaluated a comprehensive CT brain deep learning model, which performed strongly, improved the performance of radiologists, and reduced interpretation time. The model may reduce errors, improve efficiency, facilitate triage, and better enable the delivery of timely patient care. KEY POINTS: • This study demonstrated that the use of a comprehensive deep learning system assisted radiologists in the detection of a wide range of abnormalities on non-contrast brain computed tomography scans. • The deep learning model demonstrated an average area under the receiver operating characteristic curve of 0.93 across 144 findings and significantly improved radiologist interpretation performance. • The assistance of the comprehensive deep learning model significantly reduced the time required for radiologists to interpret computed tomography scans of the brain.


Assuntos
Aprendizado Profundo , Adolescente , Humanos , Radiografia , Radiologistas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adulto
2.
Diagnostics (Basel) ; 13(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37510062

RESUMO

This retrospective case-control study evaluated the diagnostic performance of a commercially available chest radiography deep convolutional neural network (DCNN) in identifying the presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies was sourced from community radiology clinics and hospitals in Australia and the USA, and was then ground-truth labelled for the presence, position, and type of line or tube from the consensus of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal tubes over the entire dataset, as well as within each subgroup, was evaluated. The area under the receiver operating characteristic curve (AUC) was assessed. The DCNN algorithm displayed high performance in detecting the presence of lines and tubes in the test dataset with AUCs > 0.99, and good position classification performance over a subpopulation of ground truth positive cases with AUCs of 0.86-0.91. The subgroup analysis showed that model performance was robust across the various subtypes of lines or tubes, although position classification performance of peripherally inserted central catheters was relatively lower. Our findings indicated that the DCNN algorithm performed well in the detection and position classification of lines and tubes, supporting its use as an assistant for clinicians. Further work is required to evaluate performance in rarer scenarios, as well as in less common subgroups.

3.
Diagnostics (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36832231

RESUMO

Limitations of the chest X-ray (CXR) have resulted in attempts to create machine learning systems to assist clinicians and improve interpretation accuracy. An understanding of the capabilities and limitations of modern machine learning systems is necessary for clinicians as these tools begin to permeate practice. This systematic review aimed to provide an overview of machine learning applications designed to facilitate CXR interpretation. A systematic search strategy was executed to identify research into machine learning algorithms capable of detecting >2 radiographic findings on CXRs published between January 2020 and September 2022. Model details and study characteristics, including risk of bias and quality, were summarized. Initially, 2248 articles were retrieved, with 46 included in the final review. Published models demonstrated strong standalone performance and were typically as accurate, or more accurate, than radiologists or non-radiologist clinicians. Multiple studies demonstrated an improvement in the clinical finding classification performance of clinicians when models acted as a diagnostic assistance device. Device performance was compared with that of clinicians in 30% of studies, while effects on clinical perception and diagnosis were evaluated in 19%. Only one study was prospectively run. On average, 128,662 images were used to train and validate models. Most classified less than eight clinical findings, while the three most comprehensive models classified 54, 72, and 124 findings. This review suggests that machine learning devices designed to facilitate CXR interpretation perform strongly, improve the detection performance of clinicians, and improve the efficiency of radiology workflow. Several limitations were identified, and clinician involvement and expertise will be key to driving the safe implementation of quality CXR machine learning systems.

4.
Nat Commun ; 13(1): 6543, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323689

RESUMO

Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndromes da Apneia do Sono , Animais , Camundongos , Humanos , Doença de Alzheimer/patologia , Prosencéfalo Basal/patologia , Modelos Animais de Doenças , Síndromes da Apneia do Sono/complicações , Hipóxia/patologia , Colinérgicos
5.
J Clin Neurosci ; 99: 217-223, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290937

RESUMO

Brain computed tomography (CTB) scans are widely used to evaluate intracranial pathology. The implementation and adoption of CTB has led to clinical improvements. However, interpretation errors occur and may have substantial morbidity and mortality implications for patients. Deep learning has shown promise for facilitating improved diagnostic accuracy and triage. This research charts the potential of deep learning applied to the analysis of CTB scans. It draws on the experience of practicing clinicians and technologists involved in development and implementation of deep learning-based clinical decision support systems. We consider the past, present and future of the CTB, along with limitations of existing systems as well as untapped beneficial use cases. Implementing deep learning CTB interpretation systems and effectively navigating development and implementation risks can deliver many benefits to clinicians and patients, ultimately improving efficiency and safety in healthcare.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Humanos , Neuroimagem , Tomografia Computadorizada por Raios X/métodos
6.
BMJ Open ; 11(12): e052902, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930738

RESUMO

OBJECTIVES: Artificial intelligence (AI) algorithms have been developed to detect imaging features on chest X-ray (CXR) with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device for radiologists. DESIGN: This prospective real-world multicentre study involved a group of radiologists using the model in their daily reporting workflow to report consecutive CXRs and recording their feedback on level of agreement with the model findings and whether this significantly affected their reporting. SETTING: The study took place at radiology clinics and hospitals within a large radiology network in Australia between November and December 2020. PARTICIPANTS: Eleven consultant diagnostic radiologists of varying levels of experience participated in this study. PRIMARY AND SECONDARY OUTCOME MEASURES: Proportion of CXR cases where use of the AI model led to significant material changes to the radiologist report, to patient management, or to imaging recommendations. Additionally, level of agreement between radiologists and the model findings, and radiologist attitudes towards the model were assessed. RESULTS: Of 2972 cases reviewed with the model, 92 cases (3.1%) had significant report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further imaging recommendations. In terms of agreement with the model, 2569 cases showed complete agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists felt their accuracy was improved with the model and were more positive towards AI poststudy. CONCLUSIONS: Use of an AI model in a real-world reporting environment significantly improved radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI diagnostic support to improve clinical practice.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Algoritmos , Humanos , Estudos Prospectivos , Radiologistas
7.
Development ; 146(18)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488566

RESUMO

During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.


Assuntos
Prosencéfalo Basal/embriologia , Neocórtex/embriologia , Neostriado/embriologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Complexo de Golgi/metabolismo , Interneurônios/metabolismo , Camundongos , Nestina/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Tamanho do Órgão , Células Piramidais/metabolismo
8.
Neurobiol Aging ; 77: 144-153, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797171

RESUMO

There is in vitro evidence that sorting nexin family member 27 (SNX27), a member of the retromer complex, changes the distribution of the amyloid-beta (Aß) precursor protein (APP) to promote its recycling and thereby prevent the production of Aß, the toxic protein associated with Alzheimer's disease (AD). In this study, we analyzed the phenotype of the familial AD APP/PS mouse strain lacking one copy of the SNX27 gene. The reduction in SNX27 expression had no significant effect on the in vivo accumulation of soluble, total, or plaque-deposited Aß, which is overproduced by the familial APP/PS transgenes. Hippocampal structure and cholinergic basal forebrain neuronal health were also unaffected. Nonetheless, mild positive and negative effects of age and/or genotype on spatial navigation performance were observed in SNX27+/- and SNX27+/-APP/PS mice, respectively. These data suggest that downregulation of SNX27 alone does not have long-term negative consequences on spatial memory, but that cognitive dysfunction in the context of high Aß deposition is exacerbated by the cellular or molecular changes induced by reduced SNX27 function.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Expressão Gênica , Presenilina-1/genética , Presenilina-1/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural , Nexinas de Classificação/fisiologia , Memória Espacial
9.
Neuronal Signal ; 3(1): NS20180066, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-32269831

RESUMO

Cholinergic basal forebrain (cBF) neurons are defined by their expression of the p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinase (Trk) neurotrophin receptors in addition to cholinergic markers. It is known that the neurotrophins, particularly nerve growth factor (NGF), mediate cholinergic neuronal development and maintenance. However, the role of neurotrophin signalling in regulating adult cBF function is less clear, although in dementia, trophic signalling is reduced and p75NTR mediates neurodegeneration of cBF neurons. Here we review the current understanding of how cBF neurons are regulated by neurotrophins which activate p75NTR and TrkA, B or C to influence the critical role that these neurons play in normal cortical function, particularly higher order cognition. Specifically, we describe the current evidence that neurotrophins regulate the development of basal forebrain neurons and their role in maintaining and modifying mature basal forebrain synaptic and cortical microcircuit connectivity. Understanding the role neurotrophin signalling plays in regulating the precision of cholinergic connectivity will contribute to the understanding of normal cognitive processes and will likely provide additional ideas for designing improved therapies for the treatment of neurological disease in which cholinergic dysfunction has been demonstrated.

10.
Mol Neurobiol ; 56(7): 4639-4652, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30374941

RESUMO

The degeneration of cholinergic basal forebrain (cBF) neurons in Alzheimer's disease (AD) leads to the cognitive impairment associated with this condition. cBF neurons express the p75 neurotrophin receptor (p75NTR), which mediates cell death, and the extracellular domain of p75NTR can bind to amyloid beta (Aß) and promote its degradation. Here, we investigated the contribution of cBF neuronal p75NTR to the progression of AD by removing p75NTR from cholinergic neurons in the APP/PS1 familial AD mouse strain. Conditional loss of p75NTR slowed cognitive decline and reduced both Aß accumulation into plaques and gliosis. Expression of the amyloid protein precursor and its cleavage enzymes ADAM10 and BACE1 were unchanged. There was also no upregulation of p75NTR in non-cholinergic cell types. This indicates that a direct interaction between cBF-expressed p75NTR and Aß does not contribute significantly to the regulation of Aß load. Rather, loss of p75NTR from cBF neurons, which results in increased cholinergic innervation of the cortex, appears to regulate alternative, more dominant, Aß clearance mechanisms.


Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Prosencéfalo Basal/metabolismo , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo , Presenilina-1/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Alelos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Transl Psychiatry ; 8(1): 199, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242146

RESUMO

Cholinergic basal forebrain (cBF)-derived neurotransmission plays a crucial role in regulating neuronal function throughout the cortex, yet the mechanisms controlling cholinergic innervation to downstream targets have not been elucidated. Here we report that removing the p75 neurotrophin receptor (p75NTR) from cBF neurons induces a significant impairment in fear extinction consolidation. We demonstrate that this is achieved through alterations in synaptic connectivity and functional activity within the medial prefrontal cortex. These deficits revert back to wild-type levels upon re-expression of the active domain of p75NTR in adult animals. These findings demonstrate a novel role for cholinergic neurons in fear extinction consolidation and suggest that neurotrophic signaling is a key regulator of cholinergic-cortical innervation and function.


Assuntos
Prosencéfalo Basal/citologia , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Axônios , Feminino , Masculino , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo
12.
PLoS One ; 12(10): e0186137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059207

RESUMO

Human malignant mesothelioma is a chemoresistant tumour that develops from mesothelial cells, commonly associated with asbestos exposure. Malignant mesothelioma incidence rates in European countries are still rising and Australia has one of the highest burdens of malignant mesothelioma on a population basis in the world. Therapy using systemic delivery of free cytotoxic agents is associated with many undesirable side effects due to non-selectivity, and is thus dose-limited which limits its therapeutic potential. Therefore, increasing the selectivity of anti-cancer agents has the potential to dramatically enhance drug efficacy and reduce toxicity. EnGeneIC Dream Vectors (EDV) are antibody-targeted nanocells which can be loaded with cytotoxic drugs and delivered to specific cancer cells via bispecific antibodies (BsAbs) which target the EDV and a cancer cell-specific receptor, simultaneously. BsAbs were designed to target doxorubicin-loaded EDVs to cancer cells via cell surface mesothelin (MSLN). Flow cytometry was used to investigate cell binding and induction of apoptosis, and confocal microscopy to visualize internalization. Mouse xenograft models were used to assess anti-tumour effects in vivo, followed by immunohistochemistry for ex vivo evaluation of proliferation and necrosis. BsAb-targeted, doxorubicin-loaded EDVs were able to bind to and internalize within mesothelioma cells in vitro via MSLN receptors and induce apoptosis. In mice xenografts, the BsAb-targeted, doxorubicin-loaded EDVs suppressed the tumour growth and also decreased cell proliferation. Thus, the use of MSLN-specific antibodies to deliver encapsulated doxorubicin can provide a novel and alternative modality for treatment of mesothelioma.


Assuntos
Proliferação de Células , Mesotelioma/patologia , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Mesotelina , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Mol Sci ; 17(12)2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27999310

RESUMO

The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17ß-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Disfunção Cognitiva/fisiopatologia , Estradiol/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Estradiol/sangue , Feminino , Humanos , Masculino , Memória/fisiologia , Camundongos , Fatores de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/biossíntese , Transdução de Sinais
14.
Endocrinology ; 156(2): 613-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415243

RESUMO

The neuroprotective effect of estradiol (E2) on basal forebrain cholinergic neurons (BFCNs) has been suggested to occur as a result of E2 modulation of the neurotrophin system on these neurons. The present study provides a comprehensive examination of the relationship between E2 and neurotrophin signaling on BFCNs by investigating the effect of E2 deficiency on the expression levels of neurotrophin receptors (NRs), TrkA, TrkB, and p75 on BFCNs. The number of TrkA receptor-expressing choline acetyltransferase-positive neurons was significantly reduced in the medial septum (MS) in the absence of E2. A significant reduction in TrkB-expressing choline acetyltransferase-positive cells was also observed in ovariectomized mice in the MS and nucleus basalis magnocellularis (NBM). p75 receptor expression was reduced in the NBM and striatum but not in the MS. We also showed that estrogen receptor (ER)-α was expressed by a small percentage of TrkA- and TrkB-positive neurons in the MS (12%) and NBM (19%) and by a high percentage of TrkB-positive neurons in the striatum (69%). Similarly, ERα was expressed at low levels by p75 neurons in the MS (6%) and NBM (9%) but was not expressed on striatal neurons. Finally, ERα knockout using neuron-specific estrogen receptor-α knockout transgenic mice abolished all E2-mediated changes in the NR expression on BFCNs. These results indicate that E2 differentially regulates NR expression on BFCNs, with effects depending on the NR type and neuroanatomical location, and also provide some evidence that alterations in the NR expression are, at least in part, mediated via ERα.


Assuntos
Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Estradiol/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Feminino , Camundongos Knockout , Ovariectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA