Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9617, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671062

RESUMO

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant's voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.


Assuntos
Esclerose Lateral Amiotrófica , Interfaces Cérebro-Computador , Fala , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/terapia , Masculino , Fala/fisiologia , Pessoa de Meia-Idade , Eletrodos Implantados , Eletrocorticografia
2.
Adv Sci (Weinh) ; 10(35): e2304853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875404

RESUMO

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex. Speech commands are accurately detected and decoded (median accuracy: 90.59%) throughout a 3-month study period without model retraining or recalibration. Use of the BCI does not require exogenous timing cues, enabling the participant to issue self-paced commands at will. These results demonstrate that a chronically implanted ECoG-based speech BCI can reliably control assistive devices over long time periods with only initial model training and calibration, supporting the feasibility of unassisted home use.


Assuntos
Esclerose Lateral Amiotrófica , Interfaces Cérebro-Computador , Humanos , Fala , Esclerose Lateral Amiotrófica/complicações , Eletrocorticografia
3.
medRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425721

RESUMO

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS). We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the user from a vocabulary of 6 keywords originally designed to allow intuitive selection of items on a communication board. Our results show for the first time that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words that are intelligible to human listeners while preserving the participants voice profile.

4.
Cereb Cortex ; 29(2): 777-787, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373641

RESUMO

Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/métodos , Eletrodos Implantados , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico , Feminino , Humanos , Masculino
5.
Neuroimage ; 135: 261-72, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27046113

RESUMO

Language tasks require the coordinated activation of multiple subnetworks-groups of related cortical interactions involved in specific components of task processing. Although electrocorticography (ECoG) has sufficient temporal and spatial resolution to capture the dynamics of event-related interactions between cortical sites, it is difficult to decompose these complex spatiotemporal patterns into functionally discrete subnetworks without explicit knowledge of each subnetwork's timing. We hypothesized that subnetworks corresponding to distinct components of task-related processing could be identified as groups of interactions with co-varying strengths. In this study, five subjects implanted with ECoG grids over language areas performed word repetition and picture naming. We estimated the interaction strength between each pair of electrodes during each task using a time-varying dynamic Bayesian network (tvDBN) model constructed from the power of high gamma (70-110Hz) activity, a surrogate for population firing rates. We then reduced the dimensionality of this model using principal component analysis (PCA) to identify groups of interactions with co-varying strengths, which we term functional network components (FNCs). This data-driven technique estimates both the weight of each interaction's contribution to a particular subnetwork, and the temporal profile of each subnetwork's activation during the task. We found FNCs with temporal and anatomical features consistent with articulatory preparation in both tasks, and with auditory and visual processing in the word repetition and picture naming tasks, respectively. These FNCs were highly consistent between subjects with similar electrode placement, and were robust enough to be characterized in single trials. Furthermore, the interaction patterns uncovered by FNC analysis correlated well with recent literature suggesting important functional-anatomical distinctions between processing external and self-produced speech. Our results demonstrate that subnetwork decomposition of event-related cortical interactions is a powerful paradigm for interpreting the rich dynamics of large-scale, distributed cortical networks during human cognitive tasks.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Eletrocorticografia/métodos , Idioma , Modelos Neurológicos , Rede Nervosa/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Leitura , Fala/fisiologia , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-25571168

RESUMO

Advanced upper limb prosthetics, such as the Johns Hopkins Applied Physics Lab Modular Prosthetic Limb (MPL), are now available for research and preliminary clinical applications. Research attention has shifted to developing means of controlling these prostheses. Penetrating microelectrode arrays are often used in animal and human models to decode action potentials for cortical control. These arrays may suffer signal loss over the long-term and therefore should not be the only implant type investigated for chronic BMI use. Electrocorticographic (ECoG) signals from electrodes on the cortical surface may provide more stable long-term recordings. Several studies have demonstrated ECoG's potential for decoding cortical activity. As a result, clinical studies are investigating ECoG encoding of limb movement, as well as its use for interfacing with and controlling advanced prosthetic arms. This overview presents the technical state of the art in the use of ECoG in controlling prostheses. Technical limitations of the current approach and future directions are also presented.


Assuntos
Interfaces Cérebro-Computador , Córtex Cerebral/fisiologia , Eletrocorticografia/métodos , Eletrodos , Próteses e Implantes , Extremidade Superior , Potenciais de Ação , Animais , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA