Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Agric For Meteorol ; 323: 109034, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36003366

RESUMO

Considerable amounts of starch granules can be present in the atmosphere from both natural and anthropogenic sources. The aim of this study is to investigate the variability and potential origin of starch granules in ambient air recorded at six cities situated in a region with dominantly agricultural land use. This is achieved by using a combination of laser spectroscopy bioaerosol measurements with 1 min temporal resolution, traditional volumetric Hirst type bioaerosol sampling and atmospheric modelling. The analysis of wind roses identified potential sources of airborne starch (i.e., cereal grain storage facilities) in the vicinity of all aerobiological stations analysed in this study. The analysis of the CALPUFF dispersion model confirmed that emission of dust from the location of storage towers situated about 2.5 km north of the aerobiological station in Novi Sad is a plausible source of high airborne concentrations of starch granules. This study is important for environmental health since it contributes body of knowledge about sources, emission, and dispersion of airborne starch, known to be involved in phenomena such as thunderstorm-triggered asthma. The presented approach integrates monitoring and modelling, and provides a roadmap for examining a variety of bioaerosols previously considered to be outside the scope of traditional aerobiological measurements.

2.
Sci Total Environ ; 826: 154231, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240189

RESUMO

This is the first time that atmospheric concentrations of individual pollen types have been recorded by an automatic sampler with 1-hour and sub-hourly resolution (i.e. 1-minute and 1-second data). The data were collected by traditional Hirst type methods and state-of the art Rapid-E real-time bioaerosol detector. Airborne pollen data from 7 taxa, i.e. Acer negundo, Ambrosia, Broussonetia papyrifera, Cupressales (Taxaceae and Cupressaceae families), Platanus, Salix and Ulmus, were collected during the 2019 pollen season in Novi Sad, Serbia. Pollen data with daily, hourly and sub-hourly temporal resolution were analysed in terms of their temporal variability. The impact of turbulence kinetic energy (TKE) on pollen cloud homogeneity was investigated. Variations in Seasonal Pollen Integrals produced by Hirst and Rapid-E show that scaling factors are required to make data comparable. Daily average and hourly measurements recorded by the Rapid-E and Hirst were highly correlated and so examining Rapid-E measurements with sub-hourly resolution is assumed meaningful from the perspective of identification accuracy. Sub-hourly data provided an insight into the heterogenous nature of pollen in the air, with distinct peaks lasting ~5-10 min, and mostly single pollen grains recorded per second. Short term variations in 1-minute pollen concentrations could not be wholly explained by TKE. The new generation of automatic devices has the potential to increase our understanding of the distribution of bioaerosols in the air, provide insights into biological processes such as pollen release and dispersal mechanisms, and have the potential for us to conduct investigations into dose-response relationships and personal exposure to aeroallergens.


Assuntos
Poluentes Atmosféricos , Pólen , Poluentes Atmosféricos/análise , Alérgenos/análise , Ambrosia , Monitoramento Ambiental , Humanos , Pólen/química , Estações do Ano
3.
Int J Biometeorol ; 65(6): 917-928, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33474614

RESUMO

The Pannonian Plain is one of the centers of ragweed distribution in Europe. The province of Vojvodina (Serbia) is located on the southern part of the Pannonian Plain, representing a highly infested region. In this study, we have used the SILAM atmospheric dispersion model to simulate ragweed pollen concentrations during the season 2016 in the Vojvodina region. SILAM was tested with three different source maps of ragweed distribution in Vojvodina only: (1) map used in operational SILAM, which was calibrated with the SILAM model and observations, (2) map derived using "top-down" approach with land cover data inventory, and (3) map obtained with "top-down" approach using crop classification from the satellite data. Additionally, the sensitivity studies were done using two modified maps to study the effect of the source strength and long-range transport. Results of simulations were validated with the bi-hourly, daily, and seasonal pollen concentrations measured at five stations in Vojvodina. Overall Pearson correlation coefficients were 0.51 (Map 1), 0.50 (Map 2), and 0.42 (Map 3), while debiased scores were 232.95 pollen m-3 (Map 1), 245.59 pollen m-3 (Map 2), and 258.24 pollen m-3 (Map 3). Even though Vojvodina is in the area of a major European source, regional transport of ragweed pollen from a few hundred kilometers of the surrounding area was important in explaining the presence of pollen in the afternoon hours, although it could not completely explain total pollen quantity. The results confirmed that it is vital to calibrate source maps using atmospheric dispersion model with the observed pollen data.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Alérgenos/análise , Ambrosia , Antígenos de Plantas/análise , Monitoramento Ambiental , Extratos Vegetais , Sérvia
4.
Sci Rep ; 10(1): 3421, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099053

RESUMO

In this study we used meteorological parameters and predictive modelling interpreted by model explanation to develop stress metrics that indicate the presence of drought and heat stress at the specific environment. We started from the extreme temperature and precipitation indices, modified some of them and introduced additional drought indices relevant to the analysis. Based on maize's sensitivity to stress, the growing season was divided into four stages. The features were calculated throughout the growing season and split in two groups, one for the drought and the other for heat stress. Generated meteorological features were combined with soil features and fed to random forest regression model for the yield prediction. Model explanation gave us the contribution of features to yield decrease, from which we estimated total amount of stress at the environments, which represents new environmental index. Using this index we ranked the environments according to the level of stress. More than 2400 hybrids were tested across the environments where they were grown and based on the yield stability they were marked as either tolerant or susceptible to heat, drought or combined heat and drought stress. Presented methodology and results were produced within the Syngenta Crop Challenge 2019.


Assuntos
Aclimatação , Genótipo , Resposta ao Choque Térmico , Hibridização Genética , Modelos Biológicos , Zea mays , Produção Agrícola , Meteorologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Zea mays/genética , Zea mays/crescimento & desenvolvimento
5.
PLoS One ; 15(1): e0227679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940403

RESUMO

Motivated by the One Health paradigm, we found the expected changes in temperature and UV radiation (UVR) to be a common trigger for enhancing the risk that viruses, vectors, and diseases pose to human and animal health. We compared data from the mosquito field collections and medical studies with regional climate model projections to examine the impact of climate change on the spreading of one malaria vector, the circulation of West Nile virus (WNV), and the incidence of melanoma. We analysed data obtained from ten selected years of standardised mosquito vector sampling with 219 unique location-year combinations, and 10 years of melanoma incidence. Trends in the observed data were compared to the climatic variables obtained by the coupled regional Eta Belgrade University and Princeton Ocean Model for the period 1961-2015 using the A1B scenario, and the expected changes up to 2030 were presented. Spreading and relative abundance of Anopheles hyrcanus was positively correlated with the trend of the mean annual temperature. We anticipated a nearly twofold increase in the number of invaded sites up to 2030. The frequency of WNV detections in Culex pipiens was significantly correlated to overwintering temperature averages and seasonal relative humidity at the sampling sites. Regression model projects a twofold increase in the incidence of WNV positive Cx. pipiens for a rise of 0.5°C in overwintering TOctober-April temperatures. The projected increase of 56% in the number of days with Tmax ≥ 30°C (Hot Days-HD) and UVR doses (up to 1.2%) corresponds to an increasing trend in melanoma incidence. Simulations of the Pannonian countries climate anticipate warmer and drier conditions with possible dominance of temperature and number of HD over other ecological factors. These signal the importance of monitoring the changes to the preparedness of mitigating the risk of vector-borne diseases and melanoma.


Assuntos
Mudança Climática , Malária/epidemiologia , Melanoma/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Animais , Anopheles/metabolismo , Anopheles/patogenicidade , Culex/virologia , Humanos , Incidência , Insetos Vetores/virologia , Mosquitos Vetores/virologia , Estações do Ano , Sérvia/epidemiologia , Temperatura , Vírus do Nilo Ocidental , Iugoslávia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA