Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1275109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022683

RESUMO

In biomedical research, germ-free and gnotobiotic mouse models enable the mechanistic investigation of microbiota-host interactions and their role on (patho)physiology. Throughout any gnotobiotic experiment, standardized and periodic microbiological testing of defined gnotobiotic housing conditions is a key requirement. Here, we review basic principles of germ-free isolator technology, the suitability of various sterilization methods, and the use of sterility testing methods to monitor germ-free mouse colonies. We also discuss their effectiveness and limitations, and share the experience with protocols used in our facility. In addition, possible sources of isolator contamination are discussed and an overview of reported contaminants is provided.


Assuntos
Pesquisa Biomédica , Infertilidade , Animais , Camundongos , Esterilização , Vida Livre de Germes
3.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414930

RESUMO

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Assuntos
Proteínas Hedgehog , Neuropilina-1 , Camundongos , Animais , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Bactérias/metabolismo
4.
Heliyon ; 8(11): e11740, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439760

RESUMO

Cells of the innate immune system, including monocytes and neutrophils, are key players in the process of venous thrombosis. T lymphocytes have recently been implicated in venous thrombus resolution but the role of B lymphocytes in thrombosis is unknown. The present study was conducted to address this question using a mouse model of partial ligation of the inferior vena cava. Although only a very low number of B cells was found in the venous thrombi of wild-type mice, B cell-deficient JHT mutant mice developed larger venous thrombi than the wild-type controls. Consistent with enhanced thrombogenesis, increased neutrophil counts were found in the circulating blood and in the thrombi of B cell-deficient mice. One of the mechanisms by which neutrophils contribute to venous thrombosis is the formation of neutrophil extracellular traps (NETs). In agreement, higher quantities of NETs were observed in the thrombi of B cell-deficient mice. In vitro assays showed no difference in the NET building capacity of the isolated neutrophils between B cell-deficient and wild-type mice, indicating that the enhanced NET formation in the thrombi of B cell-deficient mice is attributable to the increased number of circulating neutrophils in these animals. Furthermore, increased concentration of the clot-stabilizing macromolecule fibrinogen was detected in the plasma of B cell-deficient mice. In conclusion, B cell-deficiency in mice indirectly promotes venous thrombosis by increasing neutrophil numbers and elevating fibrinogen levels.

5.
Amino Acids ; 54(10): 1339-1356, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35451695

RESUMO

The essential amino acid tryptophan (Trp) is metabolized by gut commensals, yielding in compounds that affect innate immune cell functions directly, but also acting on the aryl hydrocarbon receptor (AHR), thus regulating the maintenance of group 3 innate lymphoid cells (ILCs), promoting T helper 17 (TH17) cell differentiation, and interleukin-22 production. In addition, microbiota-derived Trp metabolites have direct effects on the vascular endothelium, thus influencing the development of vascular inflammatory phenotypes. Indoxyl sulfate was demonstrated to promote vascular inflammation, whereas indole-3-propionic acid and indole-3-aldehyde had protective roles. Furthermore, there is increasing evidence for a contributory role of microbiota-derived indole-derivatives in blood pressure regulation and hypertension. Interestingly, there are indications for a role of the kynurenine pathway in atherosclerotic lesion development. Here, we provide an overview on the emerging role of gut commensals in the modulation of Trp metabolism and its influence in cardiovascular disease development.


Assuntos
Doenças Cardiovasculares , Microbiota , Humanos , Triptofano/metabolismo , Imunidade Inata , Linfócitos , Indóis/metabolismo , Inflamação
6.
Biomedicines ; 9(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34829915

RESUMO

B lymphocytes have been implicated in the development of insulin resistance, atherosclerosis and certain types of hypertension. In contrast to these studies, which were performed under pathological conditions, the present study provides evidence for the protective effect of B lymphocytes in maintaining vascular homeostasis under physiological conditions. In young mice not exposed to any known risk factors, the lack of B cells led to massive endothelial dysfunction. The vascular dysfunction in B cell-deficient mice was associated with an increased number of neutrophils in the circulating blood. Neutrophil depletion in B cell-deficient mice resulted in the complete normalization of vascular function, indicating a causal role of neutrophilia. Moreover, vascular function in B cell-deficient mice could be restored by adoptive transfer of naive B-1 cells isolated from wild-type mice. Interestingly, B-1 cell transfer also reduced the number of neutrophils in the recipient mice, further supporting the involvement of neutrophils in the vascular pathology caused by B cell-deficiency. In conclusion, we report in the present study the hitherto undescribed role of B lymphocytes in regulating vascular function. B cell dysregulation may represent a crucial mechanism in vascular pathology.

7.
Nucleic Acids Res ; 44(21): 10259-10276, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599846

RESUMO

PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.


Assuntos
Carcinógenos/toxicidade , Instabilidade Cromossômica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Imidazóis/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Aberrações Cromossômicas , Cricetinae , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Receptores com Domínio Discoidina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA