Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(12): e0159523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032195

RESUMO

IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Humanos , Camundongos , Sistema Nervoso Central , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Microglia/virologia , Latência Viral , Xenoenxertos
2.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162838

RESUMO

The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.

3.
NeuroImmune Pharm Ther ; 2(1): 79-88, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027347

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver. Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.

4.
Transl Res ; 252: 1-8, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917903

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection is a chronic disease without a known cure. The advent of effective antiretroviral therapy (ART) has enabled people with HIV (PWH) to have significantly prolonged life expectancies. As a result, morbidity and mortality associated with HIV-1 infection have declined considerably. However, these individuals experience chronic systemic inflammation whose multifaceted etiology is associated with other numerous comorbidities. Inflammasomes are vital mediators that contribute to inflammatory signaling in HIV-1 infection. Here, we provide an overview of the inflammatory pathway that underlies HIV-1 infection, explicitly highlighting the role of the NLRP3 inflammasome. We also delineate the current literature on inflammasomes and the therapeutic targeting strategies aimed at the NLRP3 inflammasome to moderate HIV-1 infection-associated inflammation. Here we describe the NLRP3 inflammasome as a key pathway in developing novel therapeutic targets to block HIV-1 replication and HIV-1-associated inflammatory signaling. Controlling the inflammatory pathways is critical in alleviating the morbidities and mortality associated with chronic HIV-1 infection in PWH.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , HIV-1/metabolismo , Infecções por HIV/complicações , Inflamação , Mediadores da Inflamação/metabolismo
5.
Microbiol Mol Biol Rev ; 85(1)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33441488

RESUMO

The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/imunologia , Alarminas/imunologia , Animais , Bactérias/imunologia , Fungos/imunologia , Helmintos/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Inflamação/imunologia , Parasitos/imunologia , Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA