Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 17484, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060605

RESUMO

Obesity is a significant risk factor for various metabolic diseases and is closely related to non-alcoholic fatty liver disease (NAFLD) characterized by inflammation and oxidative stress. Clusterin is a multi-functional protein that is up-regulated in the pathogenesis of various metabolic diseases, including obesity and NAFLD. Our previous studies indicated that hepatocyte-specific overexpression of clusterin alleviates methionine choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Here we generated transgenic mice with whole-body clusterin overexpression (wCLU-tg) and investigated the role of clusterin in Western diet-induced obesity and NAFLD. We confirmed that obesity parameters and the spectrum of NAFLD of wCLU-tg mice were improved compared to wild type mice. Contrarily, clusterin deficiency deteriorated metabolic disruptions. We also found that clusterin activates target molecules for obesity and NAFLD, namely Nrf2 and AMPK, suggesting that clusterin protects against Western diet-induced obesity and NAFLD by activating Nrf2 and AMPK.


Assuntos
Clusterina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Alelos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/etiologia , Estresse Oxidativo , Fatores de Risco
2.
Biochem Biophys Res Commun ; 495(2): 1775-1781, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229391

RESUMO

Clusterin is a multifunctional glycoprotein that plays important roles and is up-regulated in liver diseases such as hepatitis and hepatocellular carcinoma. However, little is known about the significance of clusterin in the pathogenesis of non-alcoholic steatohepatitis (NASH). The aim of this study is to examine the role of clusterin in progression of steatohepatitis in mice fed a methionine and choline deficient (MCD) diet. We generated hepatocyte-specific clusterin overexpression (hCLU-tg) mice, and hCLU-tg mice showed lower levels of hepatic triglycerides, less infiltration of macrophages and reduction of TNF-α, activation of Nrf-2 than wild-type littermates fed the MCD diet. Also, sustained clusterin expression in liver ameliorated hepatic fibrogenesis by reducing the activation of hepatic stellate cells by MCD diet. Sustained expression of clusterin in liver functioned as a preconditioning stimulus and prevented MCD diet-induced severe steatohepatitis injury via Nrf2 activation. These results demonstrate a novel function of clusterin as an immune preconditioning regulator in various inflammatory diseases including steatohepatitis.


Assuntos
Clusterina/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Clusterina/genética , Dieta/efeitos adversos , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/deficiência , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
3.
Biochem Biophys Res Commun ; 482(4): 1407-1412, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27965092

RESUMO

Clusterin is a secretory glycoprotein that is up-regulated in areas of inflammation and under increased levels of oxidative stress. Previously, we demonstrated that clusterin activates NF-κB, and up-regulates the expression of MMP-9 and TNF-α. In this research, we extend our previous findings by reporting that such clusterin-induced macrophage response is mediated via TLR4 signaling. Specifically, we found that TNF-α induced by clusterin was significantly abrogated by pretreatment of TLR4-signaling inhibitors and anti-TLR4 neutralizing antibody. Additionally, a primary culture of macrophages derived from TLR4-signal defective and knockout mice were unresponsive to clusterin, resulting in no TNF-α secretion, whereas macrophages carrying wild-type TLR4 responded to clusterin and induced TNF-α. Moreover, clusterin increased NF-κB promoter activity in HEK-Blue hTLR4 cells, but not in HEK-Blue Null2 cells. To confirm that clusterin elicits TLR4 signal transduction, recombinant clusterin was generated and purified from cell culture. Interestingly, we found that the recombinant clusterin with C-terminal HA-tag induces TNF-α secretion at a significantly lower level compared to an intact form of clusterin without C-terminal HA-tag. Removal of HA-tag from the recombinant clusterin restored its activity, suggesting that C-terminal HA-tag partially masks the domain involved in TLR4 signaling. Furthermore, clusterin enhanced TLR4 mobilization into lipid raft of plasma membrane, and TNF-α and MMP-9 secretion stimulated by clusterin was diminished by pretreatment with methyl-ß-cyclodextrin (MßCD), which was used to disrupt lipid raft. In conclusion, clusterin-induced TNF-α and MMP-9 up-regulation is most likely mediated via TLR4 recruitment into lipid rafts, and these data describe a novel role of clusterin as an endogenous regulator for TLR4 signaling.


Assuntos
Clusterina/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Humanos , Inflamação , Macrófagos/citologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Microdomínios da Membrana/química , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , NF-kappa B/metabolismo , Estresse Oxidativo , Domínios Proteicos , Células RAW 264.7
4.
Biochem Biophys Res Commun ; 450(1): 105-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24866235

RESUMO

Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU(-/-) mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.


Assuntos
Clusterina/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Endocrinology ; 155(6): 2089-101, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24684302

RESUMO

The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.


Assuntos
Clusterina/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Células Cultivadas , Clusterina/deficiência , Clusterina/metabolismo , Citometria de Fluxo , Teste de Tolerância a Glucose , Hepatócitos/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carbonilação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Biochem Biophys Res Commun ; 445(3): 645-50, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24569077

RESUMO

Clusterin induces the expression of various chemotactic cytokines including tumor necrosis factor-α (TNF-α) in macrophages and is involved in the cell migration. According to the results of this study, clusterin induced the directional migration (chemotaxis) of macrophages based on a checkerboard analysis. The chemotactic activity of clusterin was prevented by pretreatment with pertussis toxin (PTX), indicating that the Gαi/o-protein coupled receptor (GPCR) was involved in the chemotactic response of clusterin. Clusterin-stimulated chemotaxis was abrogated in a dose-dependent manner by pretreatment with gallein (a Gßγ inhibitor), indicating the involvement of Gßγ released from the GPCR. In addition, inhibitors of phospholipase C (PLC, U73122) and phosphoinositide 3-kinase (PI3K, LY294002), the key targets of Gßγ binding and activation, suppressed chemotactic migration by clusterin. The phosphorylation of Akt induced by clusterin was blocked by pretreatment with gallein or LY294002 but not with U73122, indicating that Gßγ released from the PTX-sensitive Gi protein complex activated PLC and PI3K/Akt signaling pathways separately. The activation of cellular MAP kinases was essential in that their inhibitors blocked clusterin-induced chemotaxis, and Gßγ was required for the activation of MAP kinases because gallein reduced their phosphorylations induced by clusterin. In addition, the inflammation-induced migration of macrophages was greatly reduced in clusterin-deficient mice based on a thioglycollate-induced peritonitis model system. These results suggest that clusterin stimulates the chemotactic migration of macrophages through a PTX-sensitive GPCR and Gßγ-dependent pathways and describe a novel role of clusterin as a chemoattractant of monocytes/macrophages, suggesting that clusterin may serve as a molecular bridge between inflammation and its remodeling of related tissue by recruiting immune cells.


Assuntos
Quimiotaxia , Clusterina/metabolismo , Macrófagos/citologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiotaxia/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
7.
Biochem Biophys Res Commun ; 422(1): 200-5, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22575505

RESUMO

Tumor associated macrophages are known to be closely linked with tumor progression and metastasis. On the other hand, clusterin is overexpressed in several tumor types and regarded as a putative tumor-promoting factor due to this overexpression and the subsequent induction of chemoresistance. In our previous study, clusterin was found to induce the expression of matrix metalloproteinase-9 (MMP-9) in macrophages, and MMP-9 is known to be essential for tumor cell migration and invasion via basement membrane breakdown. Because paracrine interactions between tumor cells and surrounding macrophages regulate metastasis, these findings raise the possibility that clusterin promotes the secretion of cytokines in macrophages in addition to MMP-9. Here, we demonstrate that clusterin upregulates the expressions of chemotactic cytokines, that is, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1ß (MIP-1ß), regulated upon activation, normal T cell expressed and secreted (RANTES), and tumor necrosis factor-α (TNF-α) in Raw264.7 macrophages. In particular, clusterin stimulated TNF-α secretion via the activations of ERK, JNK, and PI3K/Akt pathways in a time and dose-dependent manner. Furthermore, clusterin-induced TNF-α secretion was found to play a critical role in the chemotactic migration of Raw264.7 macrophages. It was also found that clusterin acts directly as a chemoattractant for macrophages. Together, these results suggest that clusterin stimulates the expression and secretion of TNF-α, which plays a critical role in promoting macrophage chemotaxis, via ERK, JNK, and PI3K/Akt pathways. Collectively, these findings describe a novel function for clusterin as an inducer of TNF-α in macrophages and their chemotactic migration, and suggest that clusterin has a tumor-promoting effect.


Assuntos
Quimiotaxia/fisiologia , Clusterina/fisiologia , Macrófagos Peritoneais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Clusterina/farmacologia , MAP Quinase Quinase 4/biossíntese , Sistema de Sinalização das MAP Quinases , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
8.
Biochem Biophys Res Commun ; 420(4): 851-6, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22465014

RESUMO

Clusterin is a disulfide-linked heterodimeric glycoprotein that has been implicated in a variety of biological processes. Its expression has been shown to be elevated during cellular senescence and normal aging, but it is uncertain whether clusterin protects against aging or whether its expression is a consequence of aging. To investigate the functions of clusterin during organismal aging, we established transgenic Drosophila alleles to induce the expression of the secretory form of human clusterin (hClu(S)) using the Gal4/UAS system. hClu(S) protein (~60 kDa) was detected in both adult homogenates and larval hemolymphs of flies ubiquitously overexpressing hClu(S) (da-Gal4>UAS-hClu(S)) and in motoneurons (D42-Gal4>UAS-hClu(S)). Interestingly, the mean lifespans of these hClu(S)-overexpressing flies were significantly greater than those of control flies that exhibited no hClu(S) induction. hClu(S)-overexpressing flies also showed significantly greater tolerance to heat shock, wet starvation, and oxidative stress. Furthermore, amounts of reactive oxygen species (ROS) in whole bodies were significantly lower in hClu(S)-overexpressing flies. In addition, clusterin was found to prevent the inactivation of glutamine synthetase (GS) by metal-catalyzed oxidation (MCO) in vitro, and this protection was only supported by thiol-reducing equivalents, such as, DTT or GSH, and not by ascorbate (a non-thiol MCO system). Furthermore, this protection against GS inactivation by clusterin was abolished by reacting clusterin with N-ethylmaleimide, a sulfhydryl group-modifying agent. Taken together, these results suggest that a disulfide-linked form of clusterin functions as an antioxidant protein via its cysteine sulfhydryl groups to reduce ROS levels and delay the organismal aging in fruit flies.


Assuntos
Clusterina/fisiologia , Drosophila melanogaster/fisiologia , Resposta ao Choque Térmico/genética , Longevidade/genética , Estresse Oxidativo/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Clusterina/genética , Ditiotreitol/farmacologia , Proteínas de Drosophila , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Etilmaleimida/farmacologia , Glutamato-Amônia Ligase , Hemolinfa/metabolismo , Humanos , Longevidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
J Am Soc Nephrol ; 23(1): 73-85, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22052058

RESUMO

Upregulation of clusterin occurs in several renal diseases and models of nephrotoxicity, but whether this promotes injury or is a protective reaction to injury is unknown. Here, in the mouse unilateral ureteral obstruction model, obstruction markedly increased the expression of clusterin, plasminogen activator inhibitor-1 (PAI-1), type I collagen, and fibronectin. Compared with wild-type mice, clusterin-deficient mice exhibited higher levels of PAI-1, type I collagen, and fibronectin and accelerated renal fibrosis in response to obstruction. In cultured rat tubular epithelium-like cells, adenovirus-mediated overexpression of clusterin inhibited the expression of TGF-ß-stimulated PAI-1, type I collagen, and fibronectin. Clusterin inhibited TGF-ß-stimulated Smad3 activity via inhibition of Smad3 phosphorylation and its nuclear translocation. Moreover, intrarenal delivery of adenovirus-expressing clusterin upregulated expression of clusterin in tubular epithelium-like cells and attenuated obstruction-induced renal fibrosis. In conclusion, clusterin attenuates renal fibrosis in obstructive nephropathy. These results suggest that upregulation of clusterin during renal injury is a protective response against the development of renal fibrosis.


Assuntos
Clusterina/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Adenoviridae , Animais , Caderinas/metabolismo , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Humanos , Rim/patologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Serpina E2/metabolismo , Obstrução Ureteral/complicações
10.
J Leukoc Biol ; 90(4): 761-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742938

RESUMO

Most solid tumor tissues possess a significant population of macrophages, which are known to be closely linked with tumor progression and metastasis. Clusterin has been reported to be overexpressed in various tumors and to have a tumor-promoting role. As clusterin induction and macrophage infiltration occur concurrently at the tumor site, it raises a possibility that clusterin may regulate the function of macrophages via facilitating ECM remodeling. Here, we demonstrate for the first time the expression of MMP-9 by clusterin in human primary monocytes as well as human and murine macrophage cell lines, THP-1, and Raw264.7. MMP-9 expression was accompanied by increased enzymatic activity, as revealed by gelatin zymography. The MMP-9 activity promoted by clusterin was found to be dependent on the activation of ERK1/2 and PI3K/Akt but not p38 or JNK pathways. Inhibition of PI3K activity did not affect the activation of ERK1/2 and vice versa, indicating that the two pathways were independently operated to stimulate MMP-9 activity. Moreover, clusterin facilitated nuclear translocation of NF-κB p65 along with IκB-α degradation and phosphorylation, which was critical for MMP-9 expression. As NF-κB is a central regulator of inflammation, clusterin may provide a molecular link between inflammation and cancer via up-regulating NF-κB and MMP-9. Collectively, these data highlight a novel role of clusterin as a stimulator for MMP-9 expression in macrophages, which may contribute to the tissue reorganization by serving as a modulator for ECM degradation.


Assuntos
Clusterina/metabolismo , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Clusterina/farmacologia , Indução Enzimática , Humanos , MAP Quinase Quinase 4/metabolismo , Camundongos , Neoplasias/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Dev Dyn ; 240(3): 605-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21290478

RESUMO

Based on our previous observations that clusterin induction accompanies pancreas regeneration in the rat, we sought to determine if regeneration might be impaired in mice that lacked clusterin. We studied the impact of absent clusterin on morphogenic and functional features of regenerating pancreas. Clusterin induction was accompanied in the regenerating pancreas by a robust development of new lobules with ductules, acini, and endocrine islets in wild type after partial pancreatectomy. In clusterin knock-out mice, however, pancreatectomy resulted in a poor formation of regenerating lobule. In particular, regeneration of beta-cells was also significantly reduced and was associated with persistent hyperglycemia. Duct cells obtained from pancreatectomized clusterin knock-out mice exhibited impaired beta-cell formation in vitro; this was restored by administration of exogenous clusterin. We suggest that clusterin plays a critical role to promote both exocrine and endocrine regeneration following pancreas injury, as well as for in vitro beta-cell regeneration.


Assuntos
Clusterina/metabolismo , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Regeneração/fisiologia , Animais , Western Blotting , Clusterina/genética , Clusterina/farmacologia , Teste de Tolerância a Glucose , Imuno-Histoquímica , Técnicas In Vitro , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/cirurgia , Pancreatectomia , Reação em Cadeia da Polimerase , Regeneração/genética
12.
J Leukoc Biol ; 88(5): 955-63, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20729304

RESUMO

CLU is a secreted, multifunctional protein implicated in several immunologic and pathologic conditions. As the level of serum CLU was shown to be elevated during inflammatory responses, we questioned if CLU might interact with circulating lymphocytes leading to functional consequences. To assess this possibility directly, mouse splenocytes and purified NK cells were cultured with varying dose of CLU, and its effect on cell proliferation was examined. Our data showed that CLU up-regulated DNA synthesis and expansion of NK cells significantly in response to a suboptimal, but not maximal, dose of IL-2, and CLU alone did not exhibit such effects. This CLU-mediated synergy required the co-presence of CLU at the onset of IL-2 stimulation and needed a continuous presence during the rest of the culture. Importantly, NK cells stimulated with CLU showed increased formation of cell clusters and a CD69 activation receptor, representing a higher cellular activation status compared with those from the control group. Furthermore, these NK cells displayed elevated IFN-γ production upon RMA/S tumor target exposures, implying that CLU regulates not only NK cell expansion but also effector function of NK cells. Collectively, our data present a previously unrecognized function of CLU as a novel regulator of NK cells via providing costimulation required for cell proliferation and IFN-γ secretion. Therefore, the role of CLU on NK cells should be taken into consideration for the previously observed, diverse functions of CLU in chronic inflammatory and autoimmune conditions.


Assuntos
Clusterina/farmacologia , Interferon gama/genética , Interleucina-2/farmacologia , Células Matadoras Naturais/imunologia , Animais , Western Blotting , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Citometria de Fluxo , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia
13.
J Histochem Cytochem ; 58(6): 567-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20197491

RESUMO

Nestin, which was initially identified as a marker of neural stem cells, has been reported in regenerating pancreas as well as in early embryonic stem (ES) cell derivatives. However, little is known about its specific roles in stem cells as a functional regulator. We investigated the source of the action of nestin in ES and adult pancreatic ductal stem (PDS) cells in regard to the neogenesis of insulin-secreting beta-cells. In ES cells, suppression of nestin by gene silencing led to an increased expression of the pluripotency-associated genes, including Oct 4, Nanog, and SSEA-1, before embryoid body (EB) formation, whereas it reduced endodermal and pancreatic transcription factors in EBs. Inhibition of nestin expression in adult PDS cells caused a low expression of pancreatic transcription factors and islet hormones, leading to poor beta-cell development and insulin secretion. These data may indicate not only that nestin is a simple stem cell marker, but also that it constitutes a functional factor at the time of stem cell differentiation. We suggest that nestin plays pivotal roles as an intermediate regulator governing both stemness and differentiation of stem cells in the process of their differentiation into insulin-secreting cells.


Assuntos
Diferenciação Celular/fisiologia , Células Secretoras de Insulina/citologia , Proteínas de Filamentos Intermediários/genética , Proteínas do Tecido Nervoso/genética , Ductos Pancreáticos/citologia , Animais , Primers do DNA , Regulação da Expressão Gênica , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Células Secretoras de Insulina/metabolismo , Proteínas de Filamentos Intermediários/fisiologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Nestina , Ductos Pancreáticos/metabolismo , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/fisiologia
14.
Arterioscler Thromb Vasc Biol ; 29(10): 1558-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19696405

RESUMO

OBJECTIVE: Clusterin is induced in vascular smooth muscle cells (VSMCs) during atherosclerosis and injury-induced neointimal hyperplasia. However, its functional roles in VSMCs and endothelial cells remain controversial and elusive. This study was undertaken to clarify the role of clusterin in neointimal hyperplasia and elucidate its mechanism of action. METHODS AND RESULTS: Adenovirus-mediated overexpression of clusterin (Ad-Clu) repressed TNF-alpha-stimulated expression of MCP-1, fractalkine, ICAM-1, VCAM-1, and MMP-9, leading to inhibition of VSMC migration. Both Ad-Clu and secreted clusterin suppressed VSMC proliferation by inhibiting DNA synthesis, but not by inducing apoptosis. Ad-Clu upregulated p53 and p21(cip1/waf1) but downregulated cyclins D and E, leading to suppression of pRb phosphorylation and subsequent induction of G1 arrest in VSMCs. Clusterin deficiency augmented VSMC proliferation in vitro and accelerated neointimal hyperplasia in vivo, but concomitantly impaired reendothelialization in wire-injured murine femoral arteries. Moreover, Ad-Clu significantly reduced neointimal thickening in balloon-injured rat carotid arteries. Clusterin also diminished TNF-alpha-induced apoptosis of human umbilical vein endothelial cells and restored endothelial nitric oxide synthase expression suppressed by TNF-alpha. CONCLUSIONS: These results suggest that upregulation of clusterin during vascular injury may be a protective response against, rather than a causative response to, the development of neointimal hyperplasia.


Assuntos
Clusterina/fisiologia , Citoproteção , Células Endoteliais/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Túnica Íntima/patologia , Animais , Movimento Celular , Proliferação de Células , DNA/biossíntese , Fase G1 , Hiperplasia , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo
15.
Int J Toxicol ; 28(3): 151-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546254

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been associated with diabetes in several epidemiological studies. However, the diabetogenic action of TCDD on pancreatic cells is unclear. Here, we investigated the direct toxic effects of TCDD on a rat insulin-secreting beta cell line. We found that TCDD enhances exocytosis of MTT formazan and lysosomal proteins such as beta-hexosaminindase and Lamp-1. This TCDD-induced exocytosis was abrogated by T-type calcium channel blockers (mibefradil, flunarizine) but not by an aryl hydrocarbon receptor antagonist (alpha-naphtoflavone). Indeed, cytosolic calcium levels were increased by TCDD. Furthermore, TCDD stimulated insulin secretion, which was inhibited by flunarizine. Taken together, our results suggest that TCDD-induced calcium influx via T-type channels regulates vesicular trafficking, such as lysosomal and secretory granule exocytosis, and that TCDD might exert adverse effects on beta cells by continuous insulin release followed by beta cell exhaustion. This could contribute to the link between TCDD exposure and the risk of developing diabetes.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Poluentes Ambientais/toxicidade , Exocitose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Ratos , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Via Secretória/efeitos dos fármacos
16.
BMB Rep ; 42(5): 286-92, 2009 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-19470243

RESUMO

Arginine deiminase (ADI), an arginine-degrading enzyme, has anti-proliferative and anti-tumor activities and is capable of inhibiting the production of nitric oxide (NO). Modulation of nitric oxide (NO) production is considered a promising approach for the treatment of various diseases including cancer, inflammation and neuronal disorders. In this study, an ADI gene was fused with an HIV-1 Tat peptide in a bacterial expression vector to produce an genetic in-frame Tat-ADI fusion protein. When added exogenously to the culture media, the expressed and purified Tat-ADI fusion proteins were efficiently transduced into macrophage Raw 264.7 cells in a time- and dose-dependent manner. Furthermore, transduced Tat-ADI fusion proteins markedly increased cell viability in cells treated with lipopolysaccharide (LPS). This increase in viability was mediated by an inhibition of NO production. These results suggest that this Tat-ADI fusion protein can be used in protein therapies of NO-related disorders such as cancer, inflammation and neuronal diseases.


Assuntos
Produtos do Gene tat , Hidrolases , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/biossíntese , Proteínas Recombinantes de Fusão , Animais , Linhagem Celular , Sobrevivência Celular , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , HIV-1/metabolismo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Macrófagos/citologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
Neuroreport ; 20(4): 435-9, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19218870

RESUMO

We previously reported that clusterin enhances astrocyte proliferation and extracellular signal-regulated kinase (ERK) activity. It, however, remains largely unknown how clusterin promotes cell growth. Here, we investigate the signaling pathway and related molecules underlying astrocyte proliferation by clusterin. Exogenous clusterin stimulates Ras-dependent Raf-1/mitogen-activated protein kinase kinase (MEK)/ERK activation. Clusterin-induced astrocyte proliferation and ERK1/2 phosphorylation were abrogated by either AG1478 (an inhibitor of epidermal growth factor receptor, EGFR) or EGFR small interfering RNA. Furthermore, clusterin treatment provoked tyrosine phosphorylation of EGFR (pY(1173)), which was also blocked by AG1478. These results suggest that clusterin requires EGFR activation to deliver its mitogenic signal through the Ras/Raf-1/MEK/ERK signaling cascade in astrocytes.


Assuntos
Astrócitos/fisiologia , Proliferação de Células/efeitos dos fármacos , Clusterina/farmacologia , Receptores ErbB/metabolismo , Animais , Células Cultivadas , Clusterina/fisiologia , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Mitógenos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/efeitos dos fármacos , Quinazolinas , RNA Interferente Pequeno/farmacologia , Ratos , Transdução de Sinais , Tirfostinas/farmacologia
18.
Neurochem Res ; 34(5): 964-72, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18850268

RESUMO

In the present study, we investigated the influences of a high fat diet (HD) fed for 12 weeks, on lipid peroxidation and antioxidant enzyme using 4-hydroxy-2E-nonenal (HNE)-modified proteins (HNE-mp) and Cu,Zn-superoxide dismutase (SOD1) in the hippocampal CA1 region (CA1) in C57BL/6N and C3H/HeN mice. Body weights and body weight gains were significantly higher in HD fed C57BL/6N mice than in low fat diet (LD) fed C57BL/6N and LD or HD fed C3H/HeN mice. In the HD fed C57BL/6N and C3H/HeN mice, HNE-mp immunoreactivity and protein levels were much higher than in the LD fed C57BL/6N or C3H/HeN mice. In particular, HNE-mp immunoreactivity and protein levels in HD fed C57BL/6N mice was higher than that in the HD fed C3H/HeN mice. SOD1 immunoreaction was detected in the non-pyramidal cells of C57BL/6N mice, while in the C3H/HeN mice SOD1 immunoreaction was observed in CA1 pyramidal cells. The SOD1 immunoreactivity in the LD fed C57BL/6N and C3H/HeN mice was slightly, but not significantly decreased compared to that in the HD fed C57BL/6N and C3H/HeN mice, respectively. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) immunoreactive microglia in the HD fed C57BL/6N showed hypertrophy of cytoplasm, which is the characteristics of activated microglia. These results suggest that HD fed C57BL/6N mice are more susceptible to lipid peroxidation in the CA1 than in LD fed C57BL/6N and LD or HD fed C3H/HeN mice without any differences of SOD1 expression.


Assuntos
Aldeídos/metabolismo , Gorduras na Dieta/administração & dosagem , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Técnicas In Vitro , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Obesidade/genética , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
19.
Mol Cells ; 25(2): 305-11, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18414006

RESUMO

After successful clinical application, arginine deiminase (ADI) has been proposed to be a new cancer therapeutic. In the present study, we examined the effect of ADI in combination with ionizing radiation (IR) on MCF-7 cell growth and clonogenic cell death. Cell growth was inhibited by IR in a dose-dependent manner and ADI enhanced the radiosensitivity. ADI itself did not suppress the growth of MCF-7 cells due to the high level of expression of argininosuccinate synthetase (ASS), which convert citrulline, a product of arginine degradation by ADI, to arginine. Previously, it was suggested that ammonia, another product of arginine degradation by ADI, is the main cause of the growth inhibition of irradiated hepatoma cells contaminated with ADI-expressing mycoplasma [van Rijn et al. (2003)]. However, we found that ammonia is not the only factor that enhances radiosensitivity, as enhancement was also observed in the absence of ammonia. In order to identify the enhancing effect, levels of ASS and proteins related to the cell cycle were examined. ASS was unchanged by ADI plus IR, but p21 (a CDK inhibitor) was upregulated and c-Myc downregulated. These findings indicate that changes in the expressions of cell cycle proteins are involved in the enhancement of radiosensitivity by ADI. We suggest that ADI is a potential adjunct to cancer therapy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hidrolases/farmacologia , Mycoplasma/enzimologia , Tolerância a Radiação/efeitos dos fármacos , Amônia/farmacologia , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante
20.
J Cell Biochem ; 104(3): 1065-74, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18300271

RESUMO

Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic fibrosis, but the detailed mechanism for dysregulated accumulation of extracellular matrix (ECM) remains unclear. Cultured rat PSCs become activated by profibrogenic mediators, but these mediators failed to alter the expression levels of matrix metalloproteinases (MMPs) to the endogenous tissue inhibitors of metalloproteinases (TIMPs). Here, we examined the expression of RECK, a novel membrane-anchored MMP inhibitor, in PSCs. Although RECK mRNA levels were largely unchanged, RECK protein expression was barely detected at 2, 5 days after plating PSCs, but appeared following continued in vitro culture and cell passage which result in PSC activation. When PSCs at 5 days after plating (PSCs-5d) were treated with pepstatin A, an aspartic protease inhibitor, or TGF-beta1, a profibrogenic mediator, RECK protein was detected in whole cell lysates. Conversely, Smad7 overexpression or suppression of Smad3 expression in PSCs after passage 2 (PSCs-P2) led to the loss of RECK protein expression. These findings suggest that RECK is post-translationally processed in pre-activated PSCs but protected from proteolytic degradation by TGF-beta signaling. Furthermore, collagenolytic activity of PSCs-5d was greatly reduced by TGF-beta1, whereas that of PSCs-P2 was increased by anti-RECK antibody. Increased RECK levels were also observed in cerulein-induced acute pancreatitis. Therefore, our results suggest for the first time proteolytic processing of RECK as a mechanism regulating RECK activity, and demonstrate that TGF-beta signaling in activated PSCs may promote ECM accumulation via a mechanism that preserves the protease inhibitory activity of RECK.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/fisiologia , Pâncreas/citologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Células Cultivadas , Colágeno/química , Proteínas Ligadas por GPI , Masculino , Metaloproteinases da Matriz/metabolismo , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Pepstatinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Supressoras de Tumor/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA