Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15198-15208, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743271

RESUMO

Various monovalent cations are employed to construct metal halide perovskites with various structures and functionalities. However, perovskites based on highly polar A-site cations have seldom been reported. Here, a novel hybrid 0D (NH4)x(OH3)3-xInCl6 perovskite with highly polar hydronium OH3+ cations is introduced in this study. Upon doping with Sb3+, hybrid 0D (NH4)x(OH3)3-xInCl6 single crystals exhibited highly efficient broadband yellowish-green (550 nm) and red (630 nm) dual emissions with a PLQY of 86%. The dual emission arises due to Sb3+ occupying two sites within the crystal lattice that possess different polarization environments, leading to distinct Stokes shift energies. The study revealed that lattice polarity plays a significant role in the self-trapped exciton emission of Sb3+-doped perovskites, contributing up to 25% of the Stokes shift energy for hybrid 0D (NH4)x(OH3)3-xInCl6:Sb3+ as a secondary source, in addition to the Jahn-Teller deformation. These findings highlight the potential of Sb3+-doped perovskites for achieving tunable broadband emission and underscore the importance of lattice polarity in determining the emission properties of perovskite materials.

2.
Nat Nanotechnol ; 18(11): 1289-1294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474684

RESUMO

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.

3.
Environ Sci Technol ; 57(22): 8414-8425, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227810

RESUMO

Pharmaceuticals and personal care products (PPCPs) are ubiquitous in sewage, adversely affecting ecosystems and human health. In this study, an S-scheme magnetic ZnFe2O4/ammoniated MoS2 (ZnFe2O4/A-MoS2) heterojunction as a visible-light-driven PMS activator for PPCP degradation was developed. ZnFe2O4/A-MoS2 achieves improved photocatalytic activity because the construction of S-scheme heterojunction promotes the separation of the highly reductive photogenerated electrons. The optimized photocatalyst (10%-ZnFe2O4/A-MoS2, 0.2 g/L) achieved 100% removal of 2 ppm carbamazepine (CBZ) within 2.5 min at a PMS dosage of 0.5 mM (initial pH 7.0). Mechanistic investigation revealed that the separated electrons to the ZnFe2O4 reactive center of the heterojunction facilitated PMS activation and generated SO4·- as the dominant reactive species for CBZ degradation. The system exhibited excellent practicability in various samples of actual sewage, where most sewage components negatively impacted CBZ degradation. Further, the chloride ions in high-salinity sewage could be activated to generate additional reactive chlorine species for PPCP degradation. The heterojunction possesses outstanding reusability and stability in treating various water conditions. This work provides mechanistic and practical perspectives in developing novel S-type heterojunctions for recalcitrant pollutant treatment.


Assuntos
Ecossistema , Molibdênio , Humanos , Elétrons , Esgotos , Cloretos , Preparações Farmacêuticas
4.
ACS Nano ; 17(11): 10010-10018, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249346

RESUMO

Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.

5.
Sci Total Environ ; 721: 137561, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172100

RESUMO

Microplastics (MPs) have globally been detected in aquatic and marine environments, which has raised scientific interests and public health concerns during the past decade. MPs are those polymeric particles with at least one dimension <5 mm. MPs possess complex physicochemical properties that vary their mobility, bioavailability and toxicity toward organisms and interactions with their surrounding pollutants. Similar to nanomaterials and nanoparticles, accurate and reliable detection and measurement of MPs or nanoplastics and their characteristics are important to warrant a comprehensive understanding of their environmental and ecological impacts. This review elaborates the principles and applications of diverse analytical instruments or techniques for separation, characterization and quantification of MPs in the environment. The strength and weakness of different instrumental methods in separation, morphological, physical classification, chemical characterization and quantification for MPs are critically compared and analyzed. There is a demand for standardized experimental procedures and characterization analysis due to the complex transformation, cross-contamination and heterogeneous properties of MPs in size and chemical compositions. Moreover, this review highlights emerging and promising characterization techniques that may have been overlooked by research communities to study MPs. The future research efforts may need to develop and implement new analytical tools and combinations of hyphenated technologies to complement respective limitations of detection and yield reliable characterization information for MPs. The goal of this critical review is to facilitate the research of plastic particles and pollutants in the environment and understanding of their environmental and human health effects.

6.
Water Res ; 161: 486-495, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31229729

RESUMO

Interactions between nano/microplastics and suspended sediment (SS) in natural waters are important for the environmental fate of plastic particles. This study investigated the effect of heteroaggregation between nano/microplastics and SS on the settling of aggregates. In NaCl solutions (0.05-0.5 M), large SS (100-500 µm in diameter) significantly increased the settling ratio of polystyrene nanoplastics (PSNPs) with an average diameter of 100 nm due to the formation of PSNPs-SS aggregates. The settling ratio of the heteroaggregates increased significantly when the NaCl concentration increased from 50 to 200 mM. This was primarily because higher ionic strength reduced the electrostatic repulsion between large SS and PSNPs, and subsequently increased the heteroaggregation rate. No obvious differences in settling ratios were observed in 200 or 500 mM NaCl solutions because the heteroaggregation entered the diffusion-controlled regime. However, in HA solutions (10-50 mg L-1), the surface adsorption of HA on PSNPs and large SS reduced the heteroaggregation of PSNPs-SS and thus led to the low co-settling ratio due to the steric hindrance according to the DLVO theory. In contrast, polyethylene microplastics (PEMPs) with diameters of 1.0-1.2 mm were found to always float on water surface (up to 8 months), even after addition of 500 mg L-1 small SS (<10 µm in diameter). Clearly, the heteroaggregation of PEMPs and small SS had minor effect on the settling of PEMPs due to the overwhelming boyanccy. These results provided new insight into the fate and distribution of nano/microplastics in aquatic environment, which affect the bioavailability of plastic particles in natural waters.


Assuntos
Plásticos , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Polietileno , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA